检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以llama2-70b和l
Qwen-7B:2 Qwen-72B:1 GBS 64 非必填。表示训练中所有机器一个step所处理的样本量。影响每一次训练迭代的时长。 默认值为64。对于PP(流水线并行)值大于1的场景,增大GBS值吞吐性能会有提升。 TP 8 非必填。表示张量并行。默认值为8,取值建议: Qwen-14B:8
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b
作业元信息环境变量 约束限制 为了避免新设置的环境变量与系统环境变量冲突,而引起作业运行异常或失败,请在定义自定义环境变量时,不要使用“MA_”开头的名称。 如何修改环境变量 用户可以在创建训练作业页面增加新的环境变量,也可以设置新的取值覆盖当前训练容器中预置的环境变量值。 为保证数据安全,请勿输入敏感信息,例如明文密码。
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/mnt/sfs_turbo/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。
在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/mnt/sfs_turbo/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。
权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以llama2-70b和lla
权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以llama2-70b和lla
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤二 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b
在最后的Rank节点打印。 图1 等待模型载入 训练完成后,生成的权重文件保存路径为:/mnt/sfs_turbo/llm_train/saved_dir_for_output/llama2-13b/saved_models/。 最后,请参考查看日志和性能章节查看预训练的日志和性能。
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
--port表示服务部署的端口。每个全量/增量推理实例基于配置的端口号(--port)启动服务,并按照global rank_table中的全量实例、增量实例的顺序,对全量推理实例、增量推理实例启动的端口号进行排序,端口之间用`,`分隔开作为该环境变量的输入。当前端口9000是对
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤进行评测。 # WARNING # This
901软件包中的AscendCloud-AIGC-6.5.901-xxx.zip 文件名中的xxx表示具体的时间戳,以包名发布的实际时间为准。 获取路径:Support-E,在此路径中查找下载ModelArts 6.5.901版本。 说明: 如果上述软件获取路径打开后未显示相应的软件信息
认是0。以8机训练为例,节点ID依次为(0 1 2 3 4 5 6 7);一般ID为0的节点设置为主节点IP。 WORK_DIR /home/ma-user/ws 非必填。容器的工作目录。训练的权重文件保存在此路径下。默认值为:/home/ma-user/ws。 Step2 启动训练脚本
示例值需要根据数据集${dataset}的不同,选择其一。 GeneralPretrainHandler:使用预训练的alpaca数据集。 GeneralInstructionHandler:使用微调的alpaca数据集。 MOSSInstructionHandler:使用微调的moss数据集 Al
有训练样本训练一次的过程。可根据自己要求适配 cutoff_len 4096 文本处理时的最大长度,此处为4096,用户可根据自己要求适配 dataset 指令监督微调/ppo:alpaca_en_demo rm/dpo:dpo_en_demo 多模态数据集(图像):mllm_demo