检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可信节点被仿冒,但证书不正确,故无法互信。 TICS.SRV.90000009.SSL_ CONNECT_TIME_OUT 空间和可信节点连接超时,需要排查空间到可信节点的网络连接,及可信节点的运行状态,如状态异常可尝试重启。 TICS.SRV.90000010. API_TIME_OUT 空间调取
管理数据 数据管理概述 创建连接器 创建数据集 发布数据 数据预处理 父主题: 计算节点管理
String 数据集名称 connector_name String 连接器名称 data_source String 数据库名称 table_name String 表名称 data_type String 连接器类型1.MRS,2.DLI,3.OBS,4.MODEL_ARTS,5
开发环境简介 参考:获取认证信息 配置CCE服务 配置IEF服务 TICS服务委托授权 配置IEF高可用节点 购买TICS服务 部署计算节点 创建连接器
与其他云服务的关系 统一身份认证服务 TICS使用统一身份认证服务(Identity and Access Management,简称IAM)实现认证和鉴权功能。 云审计服务 TICS使用云审计服务(Cloud Trace Service,简称CTS)审计用户在管理控制台页面的操作,
计算节点API 获取用户token 可信计算节点管理 连接器管理 数据集注册管理 任务管理 通知管理 数据集管理 多方安全计算作业管理 可信联邦学习作业管理 联邦预测作业管理 作业实例管理 联邦学习作业管理
String 连接器id。 支持数字,英文字母,下划线,长度0-32 connector_name String 连接器名称。 支持英文字母,数字,下划线,特殊符号,只能以英文字母开头,特殊符号不包括?!.*?_$ 长度0-128 data_type String 连接器数据类型 1
了解基本概念 在开始开发前,需要了解多方安全计算的基本概念。 常用概念 准备TICS执行环境 TICS执行环境当前依赖TICS空间、计算节点和连接器。 环境准备 根据场景编写sql程序 当前多方安全计算支持通过编写sql语句,来构建多方安全计算业务场景的计算任务。 使用场景 运行程序及查看结果
可信联邦学习是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模,曾经被称为联邦机器学习。 联邦预测作业 联邦预测作业在保障用户数据安全的前提下,利用多方数据和模型实现样本联合预测。 可信智能计算节点 数据参与方使用数据源计算节点模块实现自主可控的数据源注册、隐私策略(脱敏、加密)的
产品优势 多域协同 支持在分布式的、信任边界缺失的多个参与方之间建立互信空间; 实现跨组织、跨行业的多方数据融合分析和多方联合学习建模。 灵活多态 支持对接主流数据源(如MRS、 DLI、 RDS、 Oracle等)的联合数据分析; 支持对接多种深度学习框架(TICS,TensorFlow)的联邦计算;
险联防联控效用。 在信息核验过程中,通过隐私计算技术实现多方黑名单数据共享,对电诈、洗钱、骗贷等行为的黑名单用户进行安全求交、匿踪查询,能够有效提升客户背景调查的安全可信程度。 现有两家企业A、B,双方决定通过TICS平台实现黑名单数据共享,通过隐私求交作业计算两方黑名单ID交集。本文以企业A为计算作业的发起方为例。
数据预处理是训练机器学习模型的一个重要前置步骤,其主要是通过转换函数将特征数据转换成更加适合算法模型的特征数据过程。TICS特征预处理功能能够实现对数据的探索、分析、规整以及转换,以达到数据在训练模型中可使用、可实用,在TICS平台内完成数据处理到建模的闭环。 假设您有如下数据集(只
配置IEF高可用节点 IEF高可用节点实现该功能要手动操作,使用rsync命令在多台虚机间定时同步文件,操作步骤如下: 以下教程适用于ECS机器系统为Centos 7.5。操作前需要购买两台同网段同文件系统的ecs节点A与节点B。 在两台虚机上安装rsync及corntab服务,
配置IEF高可用节点 IEF高可用节点实现该功能要手动操作,使用rsync命令在多台虚机间定时同步文件,操作步骤如下: 以下教程适用于ECS机器系统为Centos 7.5。操作前需要购买两台同网段同文件系统的ecs节点A与节点B。 在两台虚机上安装rsync及corntab服务,
空间成员完成计算节点部署,配置参数时选择挂载方式和数据目录,参考部署计算节点。 空间成员在计算节点中完成数据发布,参考发布数据。 约束限制 避免作业名重复。 支持本地连接器配置的数据交换类型文件。 只可以申请使用非己方的数据。 创建数据交换作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“可信数据交换
这种情况下,xx医院想申请使用其他机构的乳腺癌患者数据进行乳腺癌预测模型建模会非常困难。因此可以通过华为TICS可信智能计算平台的横向联邦功能,实现在患者隐私不泄露的前提下,利用其他机构的医疗数据提升乳腺癌预测模型的准确率。 进一步地,可根据该模型案例发散,构建老年人健康预测、高血压预测、失能早期预警模型等。
概述 可信联邦学习作业是可信智能计算服务提供的在保障用户数据安全的前提下,利用多方数据实现的联合建模。 安全可信。 多种训练场景。 方便与已有服务对接。 使用场景 横向联邦机器学习 横向联邦机器学习,适用于参与者的数据特征重叠较多,而样本ID重叠较少的情况,联合多个参与者的具有相
概述 联邦预测作业在保障用户数据安全、模型资产安全的前提下,利用多方数据和模型实现样本联合预测。 目前TICS支持两种类型的预测方式: 批量预测: 批量预测通过在计算节点后台发起离线预测任务的方式,在任务完成后可以获得指定数据集中所有样本的预测结果。 实时预测: 实时预测通过在计
"xxxxxxxxxxxxxxxxxx" } } } } 获取Token后,再调用其他接口时(以数据开发组件的“查询连接列表”接口为例),您需要在请求消息头中添加“X-Auth-Token”,其值即为Token。例如Token值为“ABCDEFJ....”,
台。 图1 前往计算节点 登录到计算节点后,进入数据管理并进行数据集发布。 图2 数据管理中新建数据集 参考下图填写参数信息。(1)指定连接器为localConnector,选择数据文件的路径,填写数据名称;(2)字段配置中特征字段(x_{特征序号})均配置为字段类型:FLOAT