检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
使用AI Gallery SDK构建自定义模型 AI Gallery的Transformers库支持部分开源的模型结构框架,并对昇腾系列显卡进行了训练/推理性能优化,可以做到开箱即用。如果你有自己从头进行预训练的模型,AI Gallery也支持使用SDK构建自定义模型接入AI Gallery
将AI Gallery中的模型部署为AI应用 AI Gallery支持将模型部署为AI应用,在线共享给其他用户使用。 前提条件 选择的模型必须是支持部署为AI应用的模型,否则模型详情页没有“部署 > AI应用”选项。 部署AI应用 登录AI Gallery。 单击“模型”进入模型列表
准备Notebook ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中的训练作业需要通过SFS Turbo挂载盘的形式创建,因此需要将上述数据集、代码、权重文件从OBS桶上传至SFS Turbo
构建模型 自定义模型规范 自定义镜像规范 使用AI Gallery SDK构建自定义模型 父主题: 发布和管理AI Gallery模型
监控Lite Cluster资源 使用AOM查看Lite Cluster监控指标 使用Prometheus查看Lite Cluster监控指标 父主题: Lite Cluster资源管理
日志提示"Permission denied" 问题现象 训练作业访问挂载的EFS,或者是执行.sh启动脚本时,出现如下错误: OSError: [Errno 13]Permission denied: '/xxx/xxxx' bash: /bin/ln: Permission denied
DockerFile构建镜像(可选) 本章节主要介绍通过DockerFile文件构建训练镜像,将训练过程中依赖包封装使用,过程中需要连接互联网git clone,请确保环境可以访问公网,详解操作如下: 进入代码包Dockerfile文件同级目录: cd /home/ma-user/
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 模型参数量 训练类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
使用AWQ量化 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group/per-channel,W8A16
SD3 Diffusers框架基于Lite Server适配PyTorch NPU推理指导(6.3.912) Stable Diffusion(简称SD)是一种基于扩散过程的图像生成模型,应用于文生图场景,能够帮助用户生成图像。 方案概览 本方案介绍了在ModelArts Lite
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
模型NPU卡数、梯度累积值取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16
准备Notebook(可选) 本步骤为可选操作。ModelArts Notebook云上云下,无缝协同,更多关于ModelArts Notebook的详细资料请查看开发环境介绍。 本案例中,如果用户需要自定义开发,可通过Notebook环境进行数据预处理、权重转换等操作。并且Notebook