检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
主流开源大模型基于Lite Server适配Ascend-vLLM PyTorch NPU推理指导(6.3.912) Ascend-vLLM介绍 支持的模型列表 版本说明和要求 推理服务部署 推理关键特性使用 推理服务精度评测 推理服务性能评测 附录 父主题: LLM大语言模型训练推理
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署
场景介绍 方案概览 本文档利用训练框架LlamaFactory+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的不同训练阶段方案,包括指令监督微调、DPO偏好训练、RM奖励模型训练、PPO强化训练方案。 DPO(Direct
场景介绍 方案概览 本文档利用训练框架PyTorch_npu+华为自研Ascend Snt9B硬件,为用户提供了常见主流开源大模型在ModelArts Lite Server上的预训练和全量微调方案。训练框架使用的是ModelLink。 本方案目前仅适用于部分企业客户,完成本方案的部署
推理精度测试 本章节介绍如何进行推理精度测试。 前提条件 确保容器可以访问公网。 Step1 配置精度测试环境 获取精度测试代码。精度测试代码存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目录中
模型NPU卡数取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推 表1 模型NPU卡数取值表 支持模型 支持模型参数量 文本序列长度 训练类型 Zero并行 规格与节点数 llama3 70B cutoff_len
Llama 3.2-Vision基于Lite Server适配Pytorch NPU训练微调指导(6.3.912) 方案概览 本方案介绍了在ModelArts Lite Server上使用昇腾计算资源Ascend Snt9B开展Llama 3.2-Vision-11B模型的训练过程
镜像保存时报错“container size %dG is greater than threshold %dG”如何解决? 问题现象 在Notebook里保存镜像时报错“container size %dG is greater than threshold %dG”。 原因分析
在JupyterLab使用Git克隆代码仓 在JupyterLab中使用Git插件可以克隆GitHub开源代码仓库,快速查看及编辑内容,并提交修改后的内容。 前提条件 Notebook处于运行中状态。 打开JupyterLab的git插件 在Notebook列表中,选择一个实例,单击右侧的打开进入
日志提示“Unexpected keyword argument passed to optimizer” 问题现象 在使用keras时,升级版本>=2.3.0之后,之前跑通的代码出现如下报错: TypeError: Unexpected keyword argument passed
附录:config.json文件 config.json文件用于推理服务启动时,需要修改以下参数,2台机器的每个容器中config.json文件内容一致。 ipAddress:主节点IP地址,即rank_table_file.json文件中的server_id。 managementIpAddress
准备工作 准备环境 准备代码 准备镜像环境 准备数据(可选) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.908)
训练脚本说明 Yaml配置文件参数配置说明 模型NPU卡数、梯度累积值取值表 各个模型训练前文件替换 NPU_Flash_Attn融合算子约束 录制Profiling 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.908
准备工作 准备环境 准备代码 准备数据 准备镜像 父主题: 主流开源大模型基于Lite Server适配ModelLink PyTorch NPU训练指导(6.3.909)
准备工作 准备环境 准备代码 准备镜像环境 DockerFile构建镜像(可选) 准备数据(可选) 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
训练脚本说明 Yaml配置文件参数配置说明 模型NPU卡数、梯度累积值取值表 各个模型训练前文件替换 NPU_Flash_Attn融合算子约束 BF16和FP16说明 录制Profiling 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch
准备镜像环境 Step1 检查环境 请参考Lite Server资源开通,购买Lite Server资源,并确保机器已开通,密码已获取,能通过SSH登录,不同机器之间网络互通。 购买Lite Server资源时如果无可选资源规格,需要联系华为云技术支持申请开通。 当容器需要提供服务给多个用户
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 使用llm-compressor工具量化 父主题: 主流开源大模型基于Lite Server适配PyTorch NPU推理指导(6.3.909)
LoRA微调训练 Step1 上传训练权重文件和数据集 如果在准备代码和数据阶段已经上传权重文件和数据集到容器中,可以忽略此步骤。 如果未上传训练权重文件和数据集到容器中,具体参考上传代码和权重文件到工作环境和上传数据到指定目录章节完成。训练脚本中会自动执行训练前的权重转换操作和数据处理操作