检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
业务场景 依赖的服务 委托授权项 说明 配置建议 在线服务 LTS lts:groups:create lts:groups:list lts:topics:create lts:topics:delete lts:topics:list 在线服务配置LTS日志上报。 按需配置。 批量服务
约束限制 创建在线服务时,每秒服务流量限制默认为100次,如果静态benchmark的并发数(parallel-num参数)或动态benchmark的请求频率(request-rate参数)较高,会触发推理平台的流控,请在ModelArts Standard“在线服务”详情页修改服务流量限制。
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
"application/json" } } ] 将模型部署为在线服务 参考部署为在线服务将模型部署为在线服务。 在线服务创建成功后,您可以在服务详情页查看服务详情。 您可以通过“预测”页签访问在线服务。 父主题: 制作自定义镜像用于推理
约束限制 创建在线服务时,每秒服务流量限制默认为100次,若静态benchmark的并发数(parallel-num参数)或动态benchmark的请求频率(request-rate参数)较高,会触发推理平台的流控,请在ModelArts Standard“在线服务”详情页修改服务流量限制。
约束限制 创建在线服务时,每秒服务流量限制默认为100次,如果静态benchmark的并发数(parallel-num参数)或动态benchmark的请求频率(request-rate参数)较高,会触发推理平台的流控,请在ModelArts Standard“在线服务”详情页修改服务流量限制。
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:前面步骤中自己创建的组织名称。示例:ma-group <镜像名称>:<版本名称>:定义镜像名称。示例:p
SDK下载文件目标路径设置为文件名,部署服务时报错 问题现象 ModelArts SDK在OBS下载文件时,目标路径设置为文件名,在本地IDE运行不报错,部署为在线服务时报错。 代码如下: session.obs.download_file(obs_path, local_path) 报错信息如下: 2022-07-06
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
ModelArts AI识别可以单独针对一个标签识别吗? 标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: 一般性问题
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
录制Profiling Ascend PyTorch Profiler是针对PyTorch框架开发的性能数据采集和解析工具,通过在PyTorch训练脚本中插入Ascend PyTorch Profiler接口,执行训练的同时采集性能数据,完成训练后直接输出可视化的性能数据文件,提升了性能分析效率。
标注多个标签,是否可针对一个标签进行识别? 数据标注时若标注多个标签进行训练而成的模型,最后部署成在线服务之后也是对标注的多个标签去进行识别的。如果只需要快速识别一种标签,建议单独训练识别此标签的模型使用,并选择较大的部署上线的规格也可以提供识别速度。 父主题: Standard数据管理
在预训练模型中加载参数请参考如何在训练中加载部分训练好的参数? 解析输入路径参数、输出路径参数 运行在ModelArts Standard的训练作业会读取存储在OBS服务的数据,或者输出训练结果至OBS服务指定路径,输入和输出数据需要配置2个地方: 训练代码中需解析输入路径参数和输出路径参数。ModelArts
<镜像仓库地址>/<组织名称>/<镜像名称>:<版本名称> 参数说明: <镜像仓库地址>:可在SWR控制台上查询,容器镜像服务中登录指令末尾的域名即为镜像仓库地址。 <组织名称>:Step3中自己创建的组织名称。示例:GROUP_NAME <镜像名称>:<版本名称>:定义镜像名称。示
其中ServiceStep节点包含两个输入,一个是模型列表对象,另一个是在线服务对象,此时在运行态通过开关的方式来控制部署/更新服务,如下图所示: 在线服务开关默认关闭,节点走部署服务的流程;如果需要更新服务,则手动打开开关,选择相应的在线服务即可。 进行服务更新时,需要保证被更新的服务所使用的模型与配置的模型名称相同。