检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过patch操作对服务进行更新 功能介绍 通过patch操作对服务进行更新。patch的格式可以参照json patch。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI
使用AI Gallery的订阅算法实现花卉识别 本案例以“ResNet_v1_50”算法、花卉识别数据集为例,指导如何从AI Gallery下载数据集和订阅算法,然后使用算法创建训练模型,将所得的模型部署为在线服务。其他算法操作步骤类似,可参考“ResNet_v1_50”算法操作。
模型NPU卡数取值表 不同模型推荐的训练参数和计算规格要求如表1所示。规格与节点数中的1*节点 & 4*Ascend表示单机4卡,以此类推 表1 模型NPU卡数取值表 支持模型 支持模型参数量 文本序列长度 训练类型 Zero并行 规格与节点数 llama3 70B cutoff_len
查询API 功能介绍 查询指定API详情。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v1/{project_id}/app-auth/{service_id
获取样本搜索条件 功能介绍 获取样本搜索条件。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/datasets/{dataset_id
获取训练作业支持的公共规格 功能介绍 获取训练作业支持的公共规格。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI GET /v2/{project_id}/training-job-flavors
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook
Lite Cluster&Server介绍 ModelArts Lite基于软硬件深度结合、垂直优化,构建开放兼容、极致性价比、长稳可靠、超大规模的云原生AI算力集群,提供一站式开通、网络互联、高性能存储、集群管理等能力,满足AI高性能计算等场景需求。目前其已在大模型训练推理、自动驾驶
创建Workflow数据集标注节点 功能介绍 通过对ModelArts数据集能力进行封装,实现数据集的标注功能。数据集标注节点主要用于创建标注任务或对已有的标注任务进行卡点标注,主要用于需要对数据进行人工标注的场景。 属性总览 您可以使用LabelingStep来构建数据集标注节点
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Notebook
训练性能测试 流程图 训练性能测试流程图如下图所示: 图1 训练性能测试流程 执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定。 单机<可选>: # 默认8卡 benchmark-cli train
使用AWQ量化工具转换权重 AWQ(W4A16/W8A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表1。 本章节介绍如何在Notebook使用AWQ量化工具实现推理量化。 量化方法:W4A16 per-group
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-
Yaml配置文件参数配置说明 本小节主要详细描述demo_yaml配置文件、配置参数说明,用户可根据实际自行选择其需要的参数。 表1 模型训练脚本参数 参数 示例值 参数说明 model_name_or_path /home/ma-user/ws/tokenizers/Qwen2-