检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
老师给了我们个任务,用mindSpore完成一个深度学习,求大佬指路,站内有什么方便的教程。要求不能是花卉识别、手写体数字识别、猫狗识别,因为这些按教程已经做过了(然而我还是不会mindSpore)。尽量简单,我们只要是个深度学习就能完成任务。
scatter(x_data,y_data)画上帝视角已学习到的的线性函数直线:plt.plot(x_data,2*x_data+1.0,color='red',linewidth=3)今天先到这里了。另外发现jupyter里面可以TAB代码补全,可以有很多快捷键方便操作,以前是我孤陋寡闻井底之蛙了
值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被设置为相应更小的值(从梯度下降算法的原理可以分析得出)。另一种方法就是,选择不受数据集大小影响的
值,当你学习率过小时,长时间无法收敛。因此,学习率直接决定着学习算法的性能表现。可以根据数据集的大小来选择合适的学习率,当使用平方误差和作为成本函数时,随着数据量的增多,学习率应该被设置为相应更小的值(从梯度下降算法的原理可以分析得出)。另一种方法就是,选择不受数据集大小影响的
)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep
水,再加上烹饪火候,可以做出一道菜。上面做菜的每一个要素,都可以看做一个特征变量,而重量可以看做是特征变量的值,比如鸭肉xxg,(特征变量是鸭肉,值是xxg)笋xxg,...盐xxg,水xxg,这里特征变量的值是有量级的差异的,比如水和盐来说吧,水可以50g位为单位去加减来调
点关注公众号,回复“1024”获取2TB学习资源! PC 行业的两家核心公司——Intel及AMD都发布了Q2季度财报了,虽然Intel是营收下滑,30年来首次亏损,而AMD是营收大涨70%,运营利润创纪录,但是他们两家马上就要面
)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者我们可以将“深度学习”称之为“改良版的神经网络”算法。深度学习又分为卷积神经网络(Convolutional neural networks,简称CNN)和深度置信网(Deep
还有一个是vggnet,他的问题是参数太大。深度学习的问题:1面向任务单一,依赖于大规模有标签数据,几乎是个黑箱模型。现在人工智能基本由深度学习代表了,但人工智能还有更多。。。然后就开始讲深度学习的开发框架。先整了了Theano,开始于2007年的加拿大的蒙特利尔大学。随着ten
想的改进和提纯。 我们当然也可以用梯度下降来训练诸如线性回归和支持向量机之类的模型,并且事实上当训练集相当大时这是很常用的。从这点来看,训练神经网络和训练其他任何模型并没有太大区别。计算梯度对于神经网络会略微复杂一些,但仍然可以很高效而精确地实现。会介绍如何用反向传播算法以及它的现代扩展算法来求得梯度。
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
机器学习的主要挑战是我们的算法必须能够在先前未观测的新输入上表现良好,而不只是在训练集上效果好。在先前未观测到的输入上表现良好的能力被称为泛化(generalization)。通常情况下,当我们训练机器学习模型时,我们可以访问训练集,在训练集上计算一些度量误差,被称为训练误差(training
本节我们就来了解下使用深度学习识别滑动验证码的方法。 1. 准备工作 我们这次主要侧重于完成利用深度学习模型来识别验证码缺口的过程,所以不会侧重于讲解深度学习模型的算法,另外由于整个模型实现较为复杂
plot(loss_list) 横坐标是列表中的索引,纵坐标是列表值,也就是loss值。 可以看到,曲线在收敛了,还有下降空间,但是空间越来越小,抠一点出来也越来越难, 所以我就适可而止,跑10轮就不跑了。 代码如下: ```python plt.plot(loss_list) ```
年的国际跳棋,1997年的国际象棋,以及2016年的围棋。从这个难易程度也可以看出,围棋是最强调系统性思维的,所以 AI想要战胜人类也是最难的。第一讲到这里就结束了,第二讲看了一点,其中关于人工智能机器学习概念,除了公式的定义之外,用类比的方法讲的非常的简单易懂
虽然,当数据很小时,深度学习算法表现不佳。这就是是深度学习算法需要大量数据才能完美理解的原因。但是,在这种情况下,我们可以看到算法的使用以及他们手工制作的规则。上图总结了这一事实。硬件依赖通常,深度学习依赖于高端机器,而传统学习依赖于低端机器。因此,深度学习要求包括GPU。这是它
在1904年的时候,生物学家了解了神经元的结构然后在1945年的时候发明了神经元模型。那么这个神经元的模型真的可以模拟生物的神经功能吗,个人觉得有点奇妙,不过动物植物本来都是很奇妙的存在。所谓的全连接层,就是说某层的一个节点,和他上一层的所有节点都有连接。就像连接的边长不同,每条
在新版的训练作业里已经没有了,也行是因为这个可视化服务的使用不太活跃吧所以在Modelarts产品里做这个可视化不太方便,不过没关系,我们可以用另一个云产品来做,就是cloudide
安装好之后,做一个简单的验证,就是打开notebook,然后导入tf再打印版本号就可以了.这里好像没有提到,要先安装python,所以我理解anaconda安装包里面已经包含了python环境然后是第三讲python的基础,这一讲可以先跳过。第四讲的开头插入了一个课程导学,说明tensorflow2
在深度学习领域,特别是在NLP(最令人兴奋的深度学习研究领域)中,该模型的规模正在扩大。最新的gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?通常情况下,gpt-3是非常有说服力的,但它在过去一再表明,“成功的科