已找到以下 10000 条记录
  • 深度学习应用开发》学习笔记-21

    说道:矩阵运算,是机器学习的基本手段,必须要掌握。 所以后面有线性代数、矩阵运算的基本介绍。 标量是一个特殊的向量(行向量、列向量),向量是一个特殊的矩阵;这样说来,标量,也是一个特殊的矩阵,一行一列的矩阵。 看代码吧 ```python import numpy as np ```

    作者: 黄生
    1038
    2
  • 深度学习应用开发》学习笔记-11

    太快步子大了容易扯着蛋,也没有必要。这里的用学习率/步长来描述这个节奏,如果梯度是2.5,学习率是0.01,那下一个尝试的点是距离前一个点2.5*0.01=0.0025的位置。(梯度是固定的,还是每走一步都会变的呢?)个人认为好的学习率,不应该是一个固定值,而应该是先大后小。也就

    作者: 黄生
    1128
    1
  • 深度学习应用开发》学习笔记-29

    test_num=len(x_data)-train_num-valid_num #训练 x_train=x_data[:train_num] y_train=y_data[:train_num] #验证 x_valid=x_data[train_num:train_num+valid_num]

    作者: 黄生
    767
    3
  • 深度学习应用开发》学习笔记-31

    shape,train_labels.shape,test_image.shape,test_labels.shape) #60000条训练里再分了55000的训练和5000的验证;28和28代表图片尺寸 ``` (60000, 28, 28) (60000,) (10000, 28

    作者: 黄生
    520
    0
  • 分享深度学习笔记

    深度学习领域,特别是在NLP(最令人兴奋的深度学习研究领域)中,该模型的规模正在扩大。最新的gpt-3模型有1750亿个参数。把它比作伯特就像把木星比作蚊子一样(好吧,不是字面意思)。深度学习的未来会更大吗?通常情况下,gpt-3是非常有说服力的,但它在过去一再表明,“成功的科

    作者: 初学者7000
    636
    1
  • 深度学习应用开发》学习笔记-10

    征,?},用于对新数据做出预测模型可将样本映射到预测标签,由模型的内部参数定义,内部参数通过学习得到具体到这里,参数就是 y=wx+b里的w和b,也叫权重和偏差?在监督式学习中,机器学习算法通过以下方式构建模型:检查多个样本并尝试找出可最大限度的减少损失的模型。这一过程称为经验风

    作者: 黄生
    1431
    3
  • 深度学习应用开发》学习笔记-01

    人工智能相关的课程,看了一下确实很不错。课程名称叫做《深度学习应用开发 基于tensorflow的实践》。是一个入门级别的课程,不需要人工智能的基础,不需要太多的数学知识,也不需要什么编程经验。我觉得很友好呀,所以现在开始学习并记录一下第一讲:导论第二讲:环境搭建和Python快

    作者: 黄生
    1139
    5
  • 深度学习应用开发》学习笔记-23

    23.9 22. 11.9] ,shape= (506,) ```python #数据就已经读进来了 #None代表未知,因为我们可以一次带入一行样本,也可以一次带入多行样本 x=tf.placeholder(tf.float32,[None,12],name="X") y=tf.placeholder(tf

    作者: 黄生
    1471
    4
  • 深度学习的挑战

    PC)系统,这些系统尤其擅长深度学习所需的计算类型。在过去,这种水平的硬件对于大多数组织来说成本费用太高。然而,基于云计算的机器学习服务的增长意味着组织可以在没有高昂的前期基础设施成本的情况下访问具有深度学习功能的系统。 •数据挑战:深度学习也会受到妨碍其他大数据项目的数据质量和

    作者: 建赟
    1653
    2
  • 深度学习之半监督学习

    深度学习的背景下,半监督学习通常指的是学习一个表示 h = f(x)。学习表示的目的是使相同类中的样本有类似的表示。无监督学习可以为如何在表示空间聚集样本提供有用线索。在输入空间紧密聚集的样本应该被映射到类似的表示。在许多情况下,新空间上的线性分类器可以达到较好的泛化 (Belkin

    作者: 小强鼓掌
    749
    10
  • 资料学习 - 开源深度学习框架tinygrad

    深度学习时代,谷歌、Facebook、百度等科技巨头开源了多款框架来帮助开发者更轻松地学习、构建和训练不同类型的神经网络。而这些大公司也花费了很大的精力来维护 TensorFlow、PyTorch 这样庞大的深度学习框架。除了这类主流框架之外,开发者们也会开源一些小而精的框架或者库。比如今年

    作者: RabbitCloud
    729
    5
  • 适合新手的深度学习综述(4)--深度学习方法

    本文转载自机器之心。深度神经网络在监督学习中取得了巨大的成功。此外,深度学习模型在无监督、混合和强化学习方面也非常成功。4.1 深度监督学习监督学习应用在当数据标记、分类器分类或数值预测的情况。LeCun 等人 (2015) 对监督学习方法以及深层结构的形成给出了一个精简的解释。Deng

    作者: @Wu
    176
    1
  • 深度学习应用开发》学习笔记-26

    训练模型跑出来了后,要使用,但是我们没有数据了,因为数据都拿去训练了。 所以课程中,随机挑了一条训练数据来应用到模型里来使用。 这样是不好的,因为就像学习训练时将考试题都让你做过一遍,再让你考试就不公平了,类似于作弊了。 应该是考你运用学到的知识,来做没做过的题。 那比较好的做法呢,是有一些数据,把这些数据分一分,

    作者: 黄生
    826
    3
  • 深度学习概览

    HCIA-AI V3.0系列课程。本课程主要讲述深度学习相关的基本知识,其中包括深度学习的发展历程、深度学习神经 网络的部件、深度学习神经网络不同的类型以及深度学习工程中常见的问题。

  • 深度学习应用开发》学习笔记-13

    Variable来声明来创建变量,它是会变的,在训练中学习到的,所以给它的初值是多少是无所谓的然后就是怎么样来训练模型了训练模型就是一个不断迭代不断改进的过程首先是训练参数,也就是超参,一个是迭代次数train_epochs,这里设置为10,根据复杂情况,可能上万次都可能的。一个是学习率learning_rate,这里默认为0

    作者: 黄生
    457
    0
  • 机器学习深度学习的区别是什么?

    深度学习是机器学习算法的子类,其特殊性是有更高的复杂度。因此,深度学习属于机器学习,但它们绝对不是相反的概念。我们将浅层学习称为不是深层的那些机器学习技术。让我们开始将它们放到我们的世界中:这种高度复杂性基于什么?在实践中,深度学习由神经网络中的多个隐藏层组成。我们在《从神经元到

    作者: @Wu
    1169
    3
  • 深度学习笔记之表示学习

    解决这个问题的途径之一是使用机器学习来发掘表示本身,而不仅仅把表示映射到输出。这种方法我们称之为表示学习(representation learning)。学习到的表示往往比手动设计的表示表现得更好。并且它们只需最少的人工干预,就能让AI系统迅速适应新的任务。表示学习算法只需几分钟就可以为简单的任务

    作者: 小强鼓掌
    855
    1
  • 深度学习初体验

    (NLP)领域。显然,“深度学习”是与机器学习中的“神经网络”是强相关,“神经网络”也是其主要的算法和手段;或者可以将“深度学习”称之为“改良版的神经网络”算法。目前主流的深度学习的框架有:TensorFlow、MOA、Caffe、Apache SINGA、PyTorch、Puppet、MXNet、Nervana

    作者: ad123445
    8089
    33
  • 机器学习深度学习的未来趋势

    机器学习深度学习的未来蕴含着无穷的可能!越来越多的机器人不仅用在制造业,而且在一些其他方面可以改善我们的日常生活方式。医疗行业也可能会发生变化,因为深度学习有助于医生更早地预测或发现癌症,从而挽救生命。在金融领域,机器学习深度学习可以帮助公司甚至个人节省资金,更聪明地投资,更

    作者: @Wu
    1240
    2
  • 深度学习在环保

    Anthony 如是说:" 这一领域的开发获得了高速发展。深度学习模型在规模上不断扩大,越来越先进, 目前呈指数级增长。令大多数人意想不到的是:这意味着能源消耗正在随之增加。" 一次深度学习训练 =126 个丹麦家庭的年度能源消耗 深度学习训练是数学模型识别大型数据集中的模式的过程。这是一

    作者: 初学者7000
    838
    2