检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加 TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表2进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加 TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表2进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl
git-lfs-linux-arm64-v3.2.0.tar.gz cd git-lfs-3.2.0 sudo sh install.sh 设置git配置去掉ssl校验。 git config --global http.sslVerify false 从github拉取finetrainers代码。
_6 Step6 监督微调 bash finetune_ds.sh 修改模型权重路径${model_path},保持其余参数一致。脚本参数设置如下: #!/bin/bash GPUS_PER_NODE=8 NNODES=1 NODE_RANK=0 MASTER_ADDR=localhost
|──llm_tools # 推理工具 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
表2 请求Header参数 参数 是否必选 参数类型 描述 Content-Type 否 String 消息体的类型。设置为text/plain,返回临时预览链接。设置为application/octet-stream,返回临时下载链接。 X-Auth-Token 是 String 用户token。
表2 请求Header参数 参数 是否必选 参数类型 描述 Content-Type 否 String 消息体的类型。设置为text/plain,返回临时预览链接。设置为application/octet-stream,返回临时下载链接。 X-Auth-Token 是 String 用户token。
使用导入的模型权重覆盖所有初始化的权重 # 4. 调用 PretrainedConfig.from_pretrained(dir)来将配置设置到self.config中 PretrainedModel.from_pretrained(dir) # 将模型实例序列化到 dir/pytorch_model
Git插件相关操作,可以方便快捷地使用Github代码库。 Tabs 同时打开多个ipynb文件时,通过Tabs激活或选择文件。 Settings JupyterLab工具系统设置。 Help JupyterLab工具自带的帮助参考。 图15 ipynb文件菜单栏中的快捷键 表4 ipynb文件菜单栏中的快捷键 快捷键
必须修改。加载tokenizer与Hugging Face权重时存放目录绝对或相对路径。请根据实际规划修改。 template qwen 必须修改。用于指定模板。如果设置为"qwen",则使用Qwen模板进行训练,模板选择可参照表1中的template列 output_dir /home/ma-user/w
/home/ma-user/modelarts/user-job-dir/run_train.sh #训练自定义镜像-预置命令场景 运行命令就可以设置为: bash /home/ma-user/modelarts/user-job-dir/run_train.sh python /hom
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加 TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表1进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加 TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表2进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表2进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl
time per iteration)*1000,其global batch size(GBS)、seq_len(SEQ_LEN)为训练时设置的参数,具体参数查看表1。 loss收敛情况:日志里存在lm loss参数 ,lm loss参数随着训练迭代周期持续性减小,并逐渐趋于稳定
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表2进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表1进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表2进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl
和PP流水线并行(pipeline-model-parallel-size),可以尝试增加TP和PP的值,一般TP×PP≤NPU数量,并且要被整除,具体调整值可参照表1进行设置。 可调整参数:MBS指最小batch处理的样本量(micro-batch-size)、GBS指一个iteration所处理的样本量(gl