检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
roject_id}/deployments/{deployment_id} (/chat/completions在SDK代码中已经进行了设置)。 IAM endpoint需要根据服务所在的区域正确配置,参考帮助文档“终端节点”章节查找。 参考IAM帮助文档,获取账号相关信息。 华为云Gallery托管三方模型
从已有数据导入:从已有的数据集中选择数据用于模型训练效果评估,如果数据超过100条,会取前100条数据。 图2 从训练数据拆分 完成训练任务基本信息。设置模型的名称、描述以及订阅提醒。 设置订阅提醒后,模型训练和部署过程产生的事件可以通过手机或邮箱发送给用户。 图3 基本信息 单击“立即创建”,创建有监督微调训练任务。
# 不同的向量存储, 不同的相似算法;计算的评分规则不同; 可以同过scoreThreshold 设置相似性判断阈值 # 例如使用Redis向量、余弦相似度、CSS词向量模型,并且设置相似性判断阈值为0.1f,代码示例如下 embedding_api = Embeddings.of("css")
of("pangu") 基础问答:基础的模型文本问答(temperature等参数采用模型默认的设置)。 llm_api.ask("你是谁?").answer 自定义参数问答:自定义设置如temperature等参数,获得对应的效果。 from pangukitsappdev.api
这种情况可能是由于以下原因导致的,建议您排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了欠拟合或过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,根据实际情况调整训练参数,帮助模型更好学习。
务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。 实例化Tool 实例化Agent 运行Agent 监听Agent Agent效果优化 Agent流式输出 Tool Retriever
务、网络搜索、文件管理、调用云服务等,通过Agent构建一个让LLM按照特定的规则迭代运行的Prompt,直到任务完成或者达到终止条件(如设置迭代次数)。 实例化Tool 实例化Agent 运行Agent 监听Agent Agent流式输出 Tool Retriever 父主题:
用户已经提供了公司名称"方欣科技有限公司",并指定了时间范围为今年1月。我将设置"report_type"为"经营异常风险检测",并将"skssqq"设置为"2024-01-01","skssqz"设置为"2024-01-31"。现在,我将调用工具。 行动:使用工具[risk_detection]
查看对应编程语言类型的SDK代码。 图1 获取SDK代码示例 当您在中间填充栏填入对应内容时, 右侧代码示例会自动完成参数的组装。 图2 设置输入参数 填写输入参数时,deployment_id为模型部署ID,可以在盘古大模型套件平台“服务管理”功能中获取。 图3 服务管理 图4
登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理 在“创建工具”页面参考表1完成工具代码的设置。 表1 创建工具参数说明 参数 是否必选 参数类型 描述 tool_id 是 String 工具ID,必须由英文小写字母和_组成,需要符合实际工具含义。
DocSummaryMapReduceSkill from pangukitsappdev.api.llms.factory import LLMs # 设置SDK使用的配置文件 os.environ["SDK_CONFIG_PATH"] = "./llm.properties" # 初始化文档问答Skill
获取API认证鉴权信息(获取Token) 登录“我的凭证 > API凭证”页面,获取user name、domain name、project id。 project id参数需要与盘古服务部署区域一致。例如,盘古大模型部署在“西南-贵阳一”区域,需要获取与“西南-贵阳一”区域对应的project
数据量很少,可以微调吗 数据量足够,但质量较差,可以微调吗 无监督的领域知识数据,量级无法支持增量预训练,如何让模型学习 如何调整训练参数,使模型效果最优 如何判断训练状态是否正常 如何评估微调后的模型是否正常 如何调整推理参数,使模型效果最优 为什么微调后的模型,回答总是在重复某一句或某几句话 为什么微调后的模型,回答中会出现乱码
l集群为例,示例集群信息如下表。 表1 示例集群信息 集群名 节点类型 节点名 规格 备注 largemodel controller ecs-edge-XXXX 鲲鹏通用计算型|8vCPUs|29GiB|rc3.2xlarge.4镜像 EulerOS 2.9 64bit with
SearchTool()); } 静态工具和动态工具的注册方式相同,通过addTool接口进行注册。 通过setMaxIterations可以设置最大迭代次数,控制Agent子规划的最大迭代步数,防止无限制的迭代或出现死循环情况。 Agent使用的模型必须为Pangu-NLP-N2-
式输出相比,提供了事件流的封装。消息内容、工具调用等通过不同的事件类型区分。 通过如下接口为Agent添加流式输出的回调: /** * 设置流式接口回调函数 * * @param streamAgentCallback 事件流回调 */ void setStreamCal
清洗。 训练参数设置:若数据质量存在问题,且因训练参数设置的不合理而导致过拟合,该现象会更加明显。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 推理参数设置:请检查推理参数中的“温度”或“核采样”等参数的设置,适当减小其中一个
属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增大模型回答生成的长度,避免生成异常截断。请注意,该参数值存在上限,请结合目标任务的实际需要以及模型支持的长度限制来调整。
变量定义区域展示的是整个工程任务下定义的变量信息,候选提示词中关联的变量也会进行展示,候选词相关操作请参见设置候选提示词。 在模型区域单击“设置”,设置提示词输入的模型和模型参数。 图5 设置模型 同一个提示词工程中,定义的变量不能超过20个。 父主题: 撰写提示词
于以下几个原因导致的,建议您依次排查: 训练参数设置:您可以通过绘制Loss曲线查询来确认模型的训练过程是否出现了问题,这种情况大概率是由于训练参数设置的不合理而导致了过拟合。请检查训练参数中的 “训练轮次”或“学习率”等参数的设置,适当降低这些参数的值,降低过拟合的风险。 数据