检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
常见错误原因和解决方法 显存溢出错误 网卡名称错误 工作负载Pod异常 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.909)
常见错误原因和解决方法 显存溢出错误 网卡名称错误 工作负载Pod异常 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU训练指导(6.3.910)
strings 允许通过SSH协议访问Notebook的公网IP地址白名单列表,默认都可以访问。当配置指定IP后,则仅允许IP所在的客户端实现对Notebook的访问。 dev_service String 支持的服务,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook
strings 允许通过SSH协议访问Notebook的公网IP地址白名单列表,默认都可以访问。当配置指定IP后,则仅允许IP所在的客户端实现对Notebook的访问。 dev_service String 支持的服务,枚举值如下: NOTEBOOK:可以通过https协议访问Notebook
访问密钥AK,获取方式请参见访问密钥。 iam_sk 访问密钥SK,获取方式请参见访问密钥。 repo_url AI Gallery仓库的地址,格式为“http://{ModelArts-Endpoint}.myhuaweicloud.com”,其中不同区域的Endpoint可以在ModelArts地区和终端节点获取。
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 附录:工作负载Pod异常问题和解决方法
本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mn
本地上传权重文件至SFS Turbo 通过以下两种方式将下载到本地的模型文件上传至SFS Turbo中。方式一操作简单,但是数据传输速度比较慢,费时间。方式二操作相对方式一复杂一些,但是数据传输速度较快。 方式一:将已下载的模型文件通过SSH直接上传至SFS Turbo中。具体步骤如下: 进入到/mn
主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.909) 推理场景介绍 准备工作 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 附录:工作负载Pod异常问题和解决方法
确保在线服务一直处于“运行中”状态,否则会导致生产环境应用不可用。 集成方式 ModelArts在线服务提供的API是一个标准的Restful API,可使用HTTPS协议访问。ModelArts提供了SDK用于调用在线服务API,SDK调用方式请参见《SDK参考》>“场景1:部署在线服务Predictor的推理预测”。
如下命令进行预测。 curl -kv -F 'images=@/home/ma-user/work/test.png' -X POST http://127.0.0.1:8080/ 图9 预测 在调试过程中,如果有修改模型文件或者推理脚本文件,需要重启run.sh脚本。执行如下命令先停止nginx服务,再运行run
Gallery”页面,填写“昵称”和“邮箱”,并根据提示获取验证码。阅读并同意《华为云AI Gallery数字内容发布协议》和《华为云AI Gallery服务协议》后,单击“确定”完成入驻。 图1 入驻AI Gallery 注册完成后,您可以在AI Gallery中报名实践活动或发布技术文章(AI说)。
py --model yolov8n.mindir infer.py是NPU上使用MindSpore Lite推理的样例,与GPU推理代码区别主要参考infer函数,不同业务场景需根据实际情况做相应修改。infer.py文件预置在AscendCloud-CV-6.3.909-xxx
model_path 配置为Qwen-VL的权重路径,例:/home/ma-user/Qwen-VL-Chat git config --global http.sslVerify false bash multimodal_algorithm/QwenVL/train/aa00ed04091e
model_path 配置为Qwen-VL的权重路径,例:/home/ma-user/Qwen-VL-Chat git config --global http.sslVerify false bash multimodal_algorithm/QwenVL/6d0ab0efd0a/qwen_vl_install
图3 本地调用 远程调用 远程调用命令如下: # endpoint以实际为准,图片为远程网络上的url curl -kv -X POST http://{server_name}:{server_port}/v1/chat/completions -H "Content-Type:
model_path 配置为Qwen-VL的权重路径,例:/home/ma-user/Qwen-VL-Chat git config --global http.sslVerify false bash multimodal_algorithm/QwenVL/6d0ab0efd0a/qwen_vl_install
the TCP request from source address 0.0.0.0/0 and port 8080. 安全组须包含至少一条入方向规则,对协议为TCP、源地址为0.0.0.0/0、端口为8080的请求放行。 在安全组中添加一条入方向规则:对协议为TCP、源地址为0
是,配置以下参数 packing: true 否,默认使用动态句长,注释掉packing参数。 选用数据精度格式bf16或fp16二者选一,两者区别可查看BF16和FP16说明。 bf16,配置以下参数。 bf16: true fp16,相比bf16还需配置loss scale参数,配置如下。
是,配置以下参数 packing: true 否,默认使用动态句长,注释掉packing参数。 选用数据精度格式bf16或fp16二者选一,两者区别可查看BF16和FP16说明。 bf16,配置以下参数。 bf16: true fp16,相比bf16还需配置loss scale参数,配置如下。