检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
分别表示从步骤2中NPU环境所生成的dump.json、标杆环境生成的dump.json及NPU环境生成的stack.json文件,is_print_compare_log配置是否开启日志打屏。 多卡场景区别于单卡场景会在步骤2按rank标号信息生成多个rank的dump文件结果
删除工作空间 功能介绍 删除工作空间。 调试 您可以在API Explorer中调试该接口,支持自动认证鉴权。API Explorer可以自动生成SDK代码示例,并提供SDK代码示例调试功能。 URI DELETE /v1/{project_id}/workspaces/{workspace_id}
--top_p 0.9 \ --recompute 执行以下脚本,生成文本。 sh ./generate_text.sh 若回显信息如下,则表示生成文本完成。 图8 生成文本完成信息 查看模型生成的文本文件。 cat unconditional_samples.json 回显信息如下:
推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含
/"当前所在路径 --baseline <baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1 模型权重中指定的Hu
/"当前所在路径 --baseline <baseline>:<可选>GP-Ant8机器精度基线Yaml文件路径,不填则使用工具自带基线配置,默认基线配置样例如下: 客户使用工具自带精度基线Yaml则需使用accuracy_cfgs.yaml文件中默认配置,权重使用表1 模型权重中指定的Hu
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface
√ √ https://huggingface.co/huggyllama/llama-7b 2 llama-13b √ √ √ √ https://huggingface.co/huggyllama/llama-13b 3 llama-65b √ √ √ √ https://huggingface
推理精度测试 本章节介绍两个精度测评工具。如何使用opencompass工具开展语言模型的推理精度测试,数据集是ceval_gen、mmlu_gen、math_gen、gsm8k_gen、humaneval_gen;以及使用lm-eval工具开展语言模型的推理精度测试,数据集包含
Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tats
√ √ https://huggingface.co/huggyllama/llama-7b 2 llama-13b √ √ √ √ https://huggingface.co/huggyllama/llama-13b 3 llama-65b √ √ √ √ https://huggingface
本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingface开源社区获取AWQ量化后的模型权重;或者获取FP16/BF16的模型权重之后,通过autoAWQ工具进行量化。 方式一:从开源社区下载发布的AWQ量化模型。 https://huggingface
Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tats
Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tats
by index tensor[index] = 3 这类操作尽量避免,没有特别好的替代方式,可以将index转化成mask,或者一开始就生成mask作为索引而不是index。 如果要替换可以用scatter算子替换,目前发现用到这种场景时index一般比较少,所以用index方式可能性能更高。
Alpaca数据集是由OpenAI的text-davinci-003引擎生成的包含52k条指令和演示的数据集。这些指令数据可以用来对语言模型进行指令调优,使语言模型更好地遵循指令。 预训练使用的Alpaca数据集下载:https://huggingface.co/datasets/tats
item_version_id)。可调用如下接口获取相关信息,如下以北京四为例: 从AI Gallery获取订阅的算法列表 GET https://modelarts.cn-north-4.myhuaweicloud.com/v1/aihub/subscriptions?con
使用边缘节点部署边缘服务能否使用http接口协议? 系统默认使用https。如果您想使用http,可以采取以下两种方式: 方式一:在部署边缘服务时添加如下环境变量: MODELARTS_SSL_ENABLED = false 图1 添加环境变量 方式二:在使用自定义镜像导入模型时
用户Token接口说明如何调用API,Token可以用于调用其他API时的鉴权。 您还可以通过这个视频教程了解如何构造请求调用API:https://bbs.huaweicloud.com/videos/102987 。 请求URI 请求URI由如下部分组成: {URI-scheme}