检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
情。 如何选择可用区? 是否将资源放在同一可用区内,主要取决于您对容灾能力和网络时延的要求。 如果您的应用需要较高的容灾能力,建议您将资源部署在同一区域的不同可用区内。 如果您的应用要求实例之间的网络延时较低,则建议您将资源创建在同一可用区内。 区域和终端节点 当您通过API使用
dataset createAutoLabelingTask 创建自动分组任务 dataset createAutoGroupingTask 创建自动部署任务 dataset createAutoDeployTask 导入样本到数据集 dataset importSamplesToDataset
AscendCloud-6.3.906-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 AscendSpeed是用于模型并行计算的框架,其中包含了许多模型的输入处理方法。
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
909) FLUX.1基于DevServer适配PyTorch NPU推理指导(6.3.909) Hunyuan-DiT基于DevServer部署适配PyTorch NPU推理指导(6.3.909) InternVL2基于DevServer适配PyTorch NPU训练指导(6.3.909)
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |──llm_inference # 推理代码包 |──llm_tools
OBS桶必须和MaaS服务在同一个Region下,否则无法选择到该OBS路径。 准备资源池 在ModelArts Studio大模型即服务平台进行模型调优、压缩或部署时,需要选择资源池。MaaS服务支持专属资源池和公共资源池。 专属资源池:专属资源池不与其他用户共享,资源更可控。在使用专属资源池之前,您
deepseek-v2-236B deepseek-coder-v2-lite-16B Ascend-vllm支持如下推理特性: 支持分离部署 支持多机推理 支持大小模型投机推理及eagle投机推理 支持chunked prefill特性 支持automatic prefix caching
已经上传benchmark验证脚本到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-3rdLLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,执行如下命令安装性能测试的关依赖。 pip install -r requirements
已经上传benchmark验证脚本到推理容器中。如果在Step5 进入容器安装推理依赖软件步骤中已经上传过AscendCloud-LLM-x.x.x.zip并解压,无需重复执行。 进入benchmark_tools目录下,切换一个conda环境,执行如下命令安装性能测试的关依赖。 conda activate
AscendCloud-6.3.907-xxx.zip 说明: 软件包名称中的xxx表示时间戳。 包含了本教程中使用到的模型训练代码、推理部署代码和推理评测代码。代码包具体说明请参见模型软件包结构说明。 获取路径:Support-E 说明: 如果上述软件获取路径打开后未显示相应的
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
PTQ量化工具GPTQ (huggingface.co)量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: pip install auto-gptq pip install --upgrade accelerate optimum transformers
Integer 资源规格的弹性资源量。物理池中该值和count必须一致。 extendParams 否 extendParams object 自定义配置参数。 表9 extendParams 参数 是否必选 参数类型 描述 dockerBaseSize 否 String 指定资源池节点的容器引擎空间大小。
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建
sh # 系列模型共同调用的多功能的脚本 |── install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建