检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
此处介绍如何通过编写Dockerfile文件制作自定义镜像的操作步骤。 安装Docker。 以Linux x86_64架构的操作系统为例,获取Docker安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL
练的数据集预处理说明。 步骤二 修改训练超参配置 以llama2-70b和llama2-13b预训练为例,执行脚本为0_pl_pretrain_70b.sh 和0_pl_pretrain_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
练的数据集预处理说明。 步骤二 修改训练超参配置 以llama2-70b和llama2-13b预训练为例,执行脚本为0_pl_pretrain_70b.sh 和0_pl_pretrain_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
以Linux x86_64架构的操作系统为例,获取Docker安装包。您可以执行以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL get.docker.com -o get-docker.sh sh get-docker.sh
csv。 --num-scheduler-steps: 需和服务启动时配置的num-scheduler-steps一致。默认为1 --served-model-name: 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --enable-prefix-c
推理服务在线测试支持文件、图片、json三种格式。通过部署为在线服务Predictor可以完成在线推理预测。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 场景:部署在线服务Predictor的推理预测
致。 在“专属资源池扩缩容”页面,设置“资源配置 > 可用区”,可用区可选择随机分配和指定AZ。 选择随机分配时,扩缩容完成后,节点的可用区分布由系统后台随机选择。 选择指定AZ时,可指定扩缩容完成后节点的可用区分布。 图1 资源配置(单节点方式) 修改容器引擎空间大小 扩容资源
运行过程中,ModelArts后台通过指标正则表达式获取搜索指标参数,朝指定的优化方向进行超参优化。用户需要在代码中打印搜索参数并在控制台配置以下参数。 图1 设置算法搜索功能 搜索指标 搜索指标为目标函数的值,通常可以设置为loss、accuracy等。通过优化搜索指标的目标值
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :
containerd 作为容器引擎,并默认给机器安装。如尚未安装,说明机器操作系统安装错误。需要重新纳管机器,重新安装操作系统。 安装nerdctl工具。nerdctl是containerd的一个客户端命令行工具,使用方式和docker命令基本一致,可用于后续镜像构建步骤中。 # 下载 nerdctl
ailed to initialize NVML 问题现象 华为云裸金属服务器,NVIDIA驱动卸载后重新安装。 (1)已卸载原有版本NVIDIA驱动和CUDA版本,且已安装新版本的NVIDIA驱动和CUDA版本 (2)执行nvidia-smi失败,提示Failed to initialize
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 硬盘限制故障
数据集预处理说明。 Step2 修改训练超参配置 以llama2-70b和llama2-13b预训练为例,执行脚本为0_pl_pretrain_70b.sh 和0_pl_pretrain_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
练的数据集预处理说明。 步骤二 修改训练超参配置 以llama2-70b和llama2-13b预训练为例,执行脚本为0_pl_pretrain_70b.sh 和0_pl_pretrain_13b.sh 。 修改模型训练脚本中的超参配置,必须修改的参数如表1所示。其他超参均有默认值,可以参考表1按照实际需求修改。
--tensor-model-parallel-size:${TP}张量并行数,需要与训练脚本中的TP值配置一样。 --pipeline-model-parallel-size:${PP}流水线并行数,需要与训练脚本中的PP值配置一样。 --load-dir:加载转换模型权重路径。 --save-dir :
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: GPU相关问题
训练作业、模型推理(即模型管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch。适用于Standard开发环境,模型训练,服务部署,请参考下表。镜像的URL、包含
error 问题现象 在Vnt1 GPU裸金属服务器(Ubuntu18.04系统),安装NVIDIA 470+CUDA 11.4后使用“nvidia-smi”和“nvcc - V”显示正确的安装信息,然后使用Pytorch下述命令验证cuda有效性: print(torch.cuda
编辑llm_train/AscendSpeed中的Dockerfile文件,修改安装transformers库代码的位置,放置在 chown -R ma-user:ma-group 代码的上面。避免transformers安装后由于权限问题无法访问。 若要对ChatCLMv3、GLMv4系列模型进行训练时,需要修改