检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
工作空间功能旨在为用户提供灵活、高效的资产管理与协作方式。平台支持用户根据业务需求或团队结构,自定义创建独立的工作空间。 每个工作空间在资产层面完全隔离,确保资产的安全性和操作的独立性,有效避免交叉干扰或权限错配带来的风险。用户可以结合实际使用场景,如不同的项目管理、部门运营或特定的研发需求,划分出
让模拟出的天气接近真实世界中的变化。 CNOP噪音通过在初始场中引入特定的扰动来研究天气系统的可预报性,会对扰动本身做一定的评判,能够挑选出预报结果与真实情况偏差最大的一类初始扰动。这些扰动不仅可以用来识别最可能导致特定天气或气候事件的初始条件,还可以用来评估预报结果的不确定性。
效果评估与优化 在低代码构建多语言文本翻译工作流中,优化和评估的关键在于如何设计和调整prompt(提示词)。prompt是与大模型或其他节点(如翻译插件)交互的核心,它直接影响工作流响应的准确性和效果。因此,效果评估与优化应从以下几个方面进行详细分析: 评估工作流响应的准确性:
描述:对于该输出参数的描述。 输出格式:支持输出的格式包括文本、Markdown、JSON。 模型配置 模型选择 选择已部署的模型。 核采样 模型在输出时会从概率最高的词汇开始选择,直到这些词汇的总概率累积达到核采样值,核采样值可以限制模型选择这些高概率的词汇,从而控制输出内容的多样性。建议不要与温度同时调整。
创建NLP大模型评测数据集 NLP大模型支持人工评测与自动评测,在执行模型评测任务前,需创建评测数据集。 评测数据集的创建步骤与训练数据集一致,本章节仅做简单介绍,详细步骤请参见使用数据工程构建NLP大模型数据集。 登录ModelArts Studio平台,进入所需空间。 在左侧导航栏中选择“数据工程
科技行业公司的最大利润和市值是多少? 科技行业公司的最小利润和市值是多少? 科技行业公司的中位利润和市值是多少? 科技行业公司的总利润和市值是多少? … 来源四:基于大模型的数据泛化。基于目标场任务的分析,通过人工标注部分数据样例,再基于大模型(比如盘古提供的任意一个规格的基础功能模
模型基于简单prompt的生成可能是多范围的各方向发散的,如果您需要进行范围约束,或加强模型对已有信息的理解,可以进行提示:“结合xxx领域的专业知识...理解/生成...”、“你需要联想与xxx相关的关键词、热点信息、行业前沿热点等...生成...”,或者可以说明已有的信息是什么领域的信息,比
数据集的整体质量。 数据发布:平台提供了数据评估、数据配比、数据流通的发布操作,旨在通过数据质量评估与合理的比例组合,确保数据满足大模型训练的多样性、平衡性和代表性需求,并促进数据的高效流通与应用。 数据评估:数据评估通过对数据集进行系统的质量检查,依据评估标准评估数据的多个维度,旨在发现潜在问题并加以解决。
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可以增
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
平台支持创建预测类数据集,创建时可导入时序数据、回归分类数据。 时序数据:时序预测数据是一种按时间顺序排列的数据序列,用于预测未来事件或趋势,过去的数据会影响未来的预测。 回归分类数据:回归分类数据包含多种预测因子(特征),用于预测连续变量的值,与时序数据不同,回归分类数据不要求数据具有时间顺序。 具体格式要求详见表1。
少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。
为什么微调后的盘古大模型总是重复相同的回答 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成了复读机式的结果,即回答中反复出现某一句话或某几句话。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“话题重复度控制”或“温度”或
上传完成后,单击“确定”,完成知识库的创建。 知识库创建完成后,如果想在当前知识库中继续上传文件,可单击该知识库进入详情页面,再单击右上角“继续上传”,上传本地文件。 知识库命中测试 平台支持对创建的知识库进行命中测试,以评估知识库的效果和准确性。 命中测试通过将用户的查询与知识库中的内容进行匹配,最
言模型的安全性,还可以赋能大语言模型,如借助专业领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示词可以包含您传递到模型的指令或问题等信息,也可以包含其他种类的信息,
盘古专业大模型能力与规格 盘古专业大模型是盘古百亿级NL2SQL模型,适用于问数场景下的自然语言问题到SQL语句生成,支持常见的聚合函数(如去重、计数、平均、最大、最小、合计)、分组、排序、比较、条件(逻辑操作、离散条件、范围区间等条件的混合和嵌套)、日期操作,支持多表关联查询。 与非专业大
预置模型。 用户在平台中可试用、已订购的预置模型。 用户自行发布的模型。 用户可以将训练完成的模型发布为模型资产。发布的模型支持查看详细信息、编辑属性、删除、导出、导入等操作。 管理模型资产 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“空间资产
读理解),提取检索文档中的有效信息,完成问题的回答。 除了上述提到的四个模块以外,还需要一个编排流程的pipeline,将这些模块提供的API接口进行编排,串联query改写、意图识别模块、检索模块和问答模块。该pipeline负责接收前端用户输入的query和历史问答,逐步处理并最终输出答案,展示在前端界面。
确定”智能添加推荐问题。推荐问题至多配置3条。 例如,“请编写输出10以内的素数的Python代码”。 “对话体验”配置完成后,可在右侧“预览调试”中查看当前配置的开场白与推荐问题。 步骤5:调试应用 创建应用后,平台支持对应用执行过程的进行预览与调试。 调试应用的步骤如下: 在页面右上角单击,参考图5配置大模型参数。
模型生成句子与实际句子在单个词的相似度,数值越高,表明模型性能越好。 ROUGE-2 模型生成句子与实际句子在两个词的相似度,数值越高,表明模型性能越好。 ROUGE-L 模型生成句子与实际句子在最长公共子序列的相似度,数值越高,表明模型性能越好。 PRECISION 问答匹配的精确度