检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据格式:多轮问答场景需要按照指定的数据格式来构造,问题需要拼接上历史所有轮对话的问题和回答。比如,当前是第三轮对话,数据中的问题字段需要包含第一轮的问题、第一轮的回答、第二轮的问题、第二轮的回答以及第三轮的问题,答案字段则为第三轮的回答。以下给出了几条多轮问答的数据样例供您参考: 原始对话示例: A:你是谁? B:您好,我是盘古大模型。
加了企业的运营成本,也影响了用户体验。盘古大模型的引入为这一问题提供了有效解决方案。 盘古大模型通过将客户知识数据转换为向量并存储在向量数据库中,利用先进的自然语言处理技术对用户输入的文本进行深度分析和理解。它能够精准识别用户的意图和需求,即使是复杂或模糊的查询,也能提供准确的响
内存中取出。一般来说,ToolProvider将由用户自定义,后续会有例子说明。 上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此工具入库时,会将工具的name和description进行向量化,并在后续的检索中生效。 注意,
出。一般来说,ToolProvider将由用户自定义,将在后续示例中说明。 此外,上述例子使用的向量数据库配置指定索引名称,以及使用name和description作为向量化字段,因此工具入库时,会将工具的name和description进行向量化,并在后续的检索中生效。 注意,
ALLOW_LEADING_DECIMAL_POINT_FOR_NUMBERS 这个字段是jackson-core里面用来标识解析json格式数据是否支持前导小数点的字段,这个报错的意思是找不到这个字段,很可能是因为用户使用的jackson版本太老导致。 建议客户本地将jackson版本升级到和华为云java
常见问题,若在评测过程中出现如下问题,可以参考解决: 问题一:JSON字段缺失、JSON字段或值错误。 解决方案:对于这几种情况,需要在微调数据中增大该缺失字段的数据比例,同时也可以在Prompt中加入对该字段的强调。 问题二:JSON格式错误、JSON内容发散。 解决方案:对于
创建模型评估数据集 在收集评估数据集时,应确保数据集的独立性和随机性,并使其能够代表现实世界的样本数据,以避免对评估结果产生偏差。对评估数据集进行分析,可以帮助了解模型在不同情境下的表现,从而得到模型的优化方向。 在“数据工程 > 数据管理”中创建“评测”类型的数据集作为评估数据集,数据集创建完成后需要执行发布操作。
保证微调数据中的输入(context字段)不重复,否则会造成模型效果不佳。 保证微调数据内容干净,不包含异常字符。 保证输出(target字段)内容符合业务场景需求。例如,短视频口播场景要求文风可以引起观众兴趣、不丢失产品特点且可以引导观众购买。 微调数据清洗: 下表中列举了本场景常见的数据质量问题以及相应的清洗策略,供您参考:
}/deployments/{deployment_id}/text/completions 请求消息头 附加请求头字段,如指定的URI和HTTP方法所要求的字段。例如定义消息体类型的请求头“Content-Type”,请求鉴权信息等。 如下公共消息头需要添加到请求中。 Cont
清洗算子功能介绍 数据清洗是提高数据质量的重要环节,包括去除异常的字符、去除表情符号和去除个人敏感内容等,经过清洗的数据可以提升训练阶段的稳定性。 平台支持通过以下清洗能力: 表1 清洗算子说明 算子类型 功能 说明 数据转换 全角转半角 将文本中的所有全角字符转换成半角字符。 中文繁简体互转
similarity_search("bar", top_k=2) 数据清理 vector_api.clear() CSS插件模式(内部已集成Embedding, 支持多字段组合向量检索)。 CSS插件模式,需要提前手工创建索引(因索引中需要指定embdding/rank模型,SDK不能简单自动创建)。 CSS
登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发 > 工具管理”,单击页面右上角“创建工具”。 图1 工具管理 在“创建工具”页面参考表1完成工具代码的设置。 表1 创建工具参数说明 参数 是否必选 参数类型 描述 tool_id 是 String 工具ID,必须由英文小写字母和_组成,需要符合实际工具含义。
什么情况下不建议微调 虽然微调可以在一定程度上提升领域能力,但有时候微调也无法解决所有问题。即使您的目标场景依赖垂域背景知识,微调也并非最佳方案,比如: 场景微调的数据量很少或者数据质量很差:微调对数据量和数据质量有很高的要求,需要使用高质量的数据进行模型训练。 垂域知识问答场景
List<Document> docs = cssVector.clear(); CSS插件模式(内部已集成Embedding, 支持多字段组合向量检索)。 CSS插件模式需要提前手工创建索引(因索引中需要指定embdding/rank模型,SDK不能简单自动创建)。 import
数据保护技术 盘古大模型服务通过多种数据保护手段和特性,保障存储在服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数
配置知识库 大模型在进行训练时,使用的是通用的数据集,这些数据集没有包含特定行业的数据。通过知识库功能,用户可以将领域知识上传到知识库中,向大模型提问时,大模型将会结合知识库中的内容进行回答,解决特定领域问题回答不准的现象。 登录盘古大模型套件平台。 在左侧导航栏中选择“应用开发
准备工作 使用盘古大模型应用开发SDK时,需要在代码中配置以下信息,请提前收集。 表1 资源列表 类型 资源 是否必选 依赖信息 参考文档 备注 大语言模型 华为云盘古 是(大语言模型至少选一个) 盘古模型API调用URL。 华为云IAM账号认证信息。 盘古大模型API参考文档:
大模型的安全性需要从哪些方面展开评估和防护 盘古大模型的安全性主要从以下方面考虑: 数据安全和隐私保护:大模型涉及大量训练数据,这些数据是重要资产。为确保数据安全,需在数据和模型训练的全生命周期内,包括数据提取、加工、传输、训练、推理和删除的各个环节,提供防篡改、数据隐私保护、加
properties后缀 ConfigLoadUtil.setBaseName("application"); 完整配置项如下: 配置项中的密码等字段建议在配置文件或者环境变量中密文存放,使用时解密,确保安全,详见配置文件敏感信息加密配置。 ################################
huaweicloud.pangu.dev.sdk.api.embedings.Embeddings; String query = "杜甫的诗代表了什么主义诗歌艺术的高峰?"; // 初始化向量库 Vector cssVector = Vectors.of(Vectors.CSS,