检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方法三:使用专用多线程下载器 hfd:hfd 是本站开发的 huggingface 专用下载工具,基于成熟工具 git+aria2,可以做到稳定下载不断线。 方法四:使用Git clone,官方提供了 git clone repo_url 的方式下载,但是不支持断点续传,并且clone 会下载历史版本占用磁盘空间。
VS Code背景配置为豆沙绿 在VS Code的配置文件settings.json中添加如下参数 "workbench.colorTheme": "Atom One Light", "workbench.colorCustomizations": { "[Atom One
在弹出的“新增标签”页中,添加标签名称,选择标签颜色,单击“确定”完成标签的新增。 图5 添加标签(1) 在“已标注”页签添加:单击页面中标签集右侧的加号,然后在弹出的“新增标签”页中,添加标签名称,选择标签颜色,单击“确定”完成标签的新增。 图6 添加标签(2) 图7 新增标签
角出现蓝色勾选框时,表示已勾选。可勾选同类别的多个音频,一起添加标签。 批量选中:如果音频列表的当前页,所有音频属于一种类型,可以在列表的右上角单击“选择当前页”,则当前页面所有的音频将选中。 添加标签。 在右侧的“添加标签”区域中,单击“标签”下侧的文本框设置标签。 方式一(已
aaS服务的定制化委托授权。 本章节主要介绍如何给IAM用户下的子用户配置更细粒度的权限。 前提条件 给用户组授权之前,请先了解用户组可以添加的使用ModelArts及其依赖服务的权限,并结合实际需求进行选择,MaaS服务支持的系统权限,请参见表1。 表1 服务授权列表 待授权的服务
--benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。
使用流程 本节主要介绍在AI Gallery中管理资产的整体流程。 在AI Gallery中,需要先将本地数据上传到AI Gallery仓库,创建AI Gallery模型、AI Gallery数据集、AI应用等资产,具体可参见托管模型到AI Gallery、托管数据集到AI Gallery、发布本地AI应用到AI
物体检测标注时,支持叠加框吗? 支持。 “物体检测”类型的数据集,在标注时,可在一张图片中添加多个标注框以及标签。需注意的是,标注框不能超过图片边缘。 父主题: Standard数据管理
VS Code中设置远端默认安装的插件 在VS Code的配置文件settings.json中添加remote.SSH.defaultExtensions参数,如自动安装Python和Maven插件,可配置如下。 "remote.SSH.defaultExtensions": [
Variables names patterns to include for trainable variables. Such as: logits. 父主题: 编写训练代码
有两种,通过本地添加图片和同步OBS中的图片数据。 图3 添加本地图片 图4 同步OBS图片数据 添加数据:您可以将本地图片快速添加到ModelArts,同时自动上传至创建项目时所选择的OBS路径中。单击“添加数据”,根据弹出的对话框的引导,输入正确的数据并添加。 同步新数据:将
方式2:利用git下载,须确保git lfs已成功安装: cd ${container_work_dir} git clone https://www.modelscope.cn/LLM-Research/Llama-3.2-11B-Vision-Instruct.git cd Llama-3
在后续训练步骤中,训练作业启动命令中包含sh scripts/install.sh,该命令用于git clone完整的代码包和安装必要的依赖包,每次启动训练作业时会执行该命令安装。 通过运行install.sh脚本,会git clone下载Megatron-LM、MindSpeed、ModelLink源码(install
--benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 需和服务启动时配置
step。 MoE模型依赖MindSpeed,当使用MoE模型推理时,需提前安装: git clone https://gitee.com/ascend/MindSpeed.git cd MindSpeed git checkout a956b907ef3b0787d2a38577eb5b702f5b7e715d
欠拟合的解决方法有哪些? 模型复杂化。 对同一个算法复杂化。例如回归模型添加更多的高次项,增加决策树的深度,增加神经网络的隐藏层数和隐藏单元数等。 弃用原来的算法,使用一个更加复杂的算法或模型。例如用神经网络来替代线性回归,用随机森林来代替决策树。 增加更多的特征,使输入数据具有更强的表达能力。
--benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 需和服务启动时配置
在后续训练步骤中,训练作业启动命令中包含sh scripts/install.sh,该命令用于git clone完整的代码包和安装必要的依赖包。 通过运行install.sh脚本,会git clone下载Megatron-LM、MindSpeed、ModelLink源码(install
为什么无法启动训练? 如果启动脚本选择了不属于本工程的代码,则无法启动训练,错误信息如下图所示。建议将启动脚本添加至本工程,或者是打开启动脚本所在工程后,再启动训练作业。 图1 错误信息 父主题: PyCharm Toolkit使用
initialized, please make sure to call init_process_group。 原因分析 原因由于单卡脚本中未添加参数“--local_rank -1”,单卡执行脚本如下,需要指定local_rank为-1为单卡模式。 # ptuning/run_npu_1d