检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
程中模型的收敛情况动态调整。 数据批量大小(batch_size) >=1 4/8 数据批量大小是指对数据集进行分批读取训练时,所设定的每个批次数据大小。批量大小越大,训练速度越快,但是也会占用更多的内存资源,并且可能导致收敛困难或者过拟合;批量大小越小,内存消耗越小,但是收敛速
型更好地收敛。 数据批量大小 数据批量是指训练过程中将数据集分成小批次进行读取,并设定每个批次的数据大小。 通常,较大的批量能够使梯度更加稳定,有助于模型的收敛。然而,较大的批量也会占用更多显存,可能导致显存不足,并延长每次训练时间。 单步迭代时处理的数据批量大小 指定每次迭代时处理的数据批量大小。
批量评估提示词效果 创建提示词评估数据集 创建提示词评估任务 查看提示词评估结果 父主题: 开发盘古大模型提示词工程
程中模型的收敛情况动态调整。 数据批量大小(batch_size) >=1 4/8 数据批量大小是指对数据集进行分批读取训练时,所设定的每个批次数据大小。批量大小越大,训练速度越快,但是也会占用更多的内存资源,并且可能导致收敛困难或者过拟合;批量大小越小,内存消耗越小,但是收敛速
创建提示词评估数据集 批量评估提示词效果前,需要先上传提示词变量数据文件用于创建对应的评估数据集。 提示词变量是一种可以在文本生成中动态替换的占位符,用于根据不同的场景或用户输入生成不同的内容。其中,变量名称可以是任意的文字,用于描述变量的含义或作用。 提示词评估数据集约束限制 上传文件限xlsx格式。
在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的结果。通过比对“预期结果”、“生成结果”的差异可以判断提示词效果。 父主题: 批量评估提示词效果
需填写密钥位置,即密钥是从Header中读取还是Query中读取。并设置密钥鉴权参数名、密钥来源参数名,以确保系统能够正确地提取和使用鉴权信息。 API Key:在调用API时提供一个唯一的API Key进行鉴权。 需填写密钥位置,即密钥是从Header中读取还是Query中读取。并设置API Key的密钥鉴权参数名和密钥值。
创建提示词评估任务 选择候选提示词进行批量自动化评估,步骤如下:。 登录ModelArts Studio大模型开发平台,进入所需空间。 在左侧导航栏中选择“Agent 开发 > 提示词工程 > 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。
负载均衡:创建负载均衡步骤请详见步骤5:创建负载均衡。 实例数:设置部署模型时所需的实例数。 作业输入方式 选择 “OBS”表示从OBS中读取数据。 作业输出方式 选择 “OBS”表示将输出结果存储在OBS中。 作业配置参数 设置模型部署参数信息,平台已给出默认值。 安全护栏 选择模式
、标题和正文等结构,不保留图片、表格、公式、页眉、页脚。 TXT内容提取 从TXT文件中提取所有文本内容。 CSV内容提取 从CSV文件中读取所有文本内容,并按该文件内容类型模板KEY值生成匹配的JSON格式数据。 PDF内容提取 从PDF中提取文本,转化为结构化数据,支持文本、表格、公式等内容提取。
保证微调数据能覆盖对应任务所涉及的所有场景。 微调数据清洗: 以下是该场景中实际使用的数据清洗策略,供您参考: 原始文本处理。基于爬虫、数据处理平台批量处理收集到的原始数据,需要将文件统一转换成纯文本的txt文件,对错误格式数据进行删除。 构建微调数据。生成垂域微调(问答对)数据,将问答对
与ModelArts服务的关系 盘古大模型使用ModelArts服务进行算法训练部署,帮助用户快速创建和部署模型。 与云搜索服务的关系 盘古大模型使用云搜索服务CSS,加入检索模块,提高模型回复的准确性、解决内容过期问题。
部署区域中期海洋智能预测服务需要同时选择“区域中期海洋智能预测”和“全球中期海洋智能预测”两个模型。 部署方式 选择“云上部署”。 作业输入方式 选择 “OBS”表示从OBS中读取数据。 作业输出方式 选择 “OBS”表示将输出结果存储在OBS中。 作业配置参数 设置模型部署参数信息。 计费模式 选择计费模式。 实例数
请求格式正确,但是由于含有语义错误,无法响应。 429 Too Many Requests 表明请求超出了客户端访问频率的限制或者服务端接收到多于它能处理的请求。建议客户端读取相应的Retry-After首部,然后等待该首部指出的时间后再重试。 500 Internal Server Error 表明服务端能被请求访问到,但是不能理解用户的请求。
于客服助手、工单助手、娱乐互动等场景。 任务型工作流。面向自动化处理场景,基于输入内容直接输出结果,无中间的对话交互过程。适用于内容生成、批量翻译、数据分析等场景。 任务型工作流不支持配置消息节点和提问器节点。 工作流编排流程见表1。 表1 工作流编排流程 操作步骤 说明 创建工作流(必选)
提示词设置为“你是一个旅游助手,需要给用户介绍旅行地的风土人情。请介绍下{{location}}的风土人情。”在评估提示词效果时,可以通过批量替换{{location}}的值,来获得模型回答,提升评测效率。 同时,撰写提示词过程中,可以通过设置模型参数来控制模型的生成行为,如调整
优化示例为:将from参数的描述优化为“翻译原语言,取值为:ar,de,ru,fr,ko,pt,ja,th,es,en,vi,zh,auto”,将to参数的描述优化为“翻译目标语言,取值为:ar,de,ru,fr,ko,pt,ja,th,es,en,vi,zh”。 图11 自动导入插件参数 在“模型配置”中,选择模型并进行参数配置。
增强模型针对于训练场景的效果和模型的泛化能力。 在准备好训练数据之后,可以通过调整训练超参数来提升模型收敛速度和最终性能,例如调整学习率、批量大小、学习率衰减比率等等。 在模型训练完之后还可以通过设计合适的提示词来提升模型在特定任务上的表现。提示词优化包括选择合适的提示词模板、调
开发盘古大模型提示词工程 什么是提示词工程 获取提示词模板 撰写提示词 横向比较提示词效果 批量评估提示词效果 发布提示词
发布提示词 通过横向比较提示词效果和批量评估提示词效果,如果找到高质量的提示词,可以将这些提示词发布至“提示词模板”中。 在提示词“候选”页面,选择质量好的提示词,并单击“保存到模板库”。 图1 保存提示词至模板库 进入“Agent 开发 > 提示词工程 > 提示词模板”页面,查看发布的提示词。