检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
场景描述 背景信息 本案例以“预测乳腺癌是良性/恶性”的场景为例。假设一部分的乳腺癌患者数据存储在xx医院,另一部分数据存储在某个其他机构,不同机构数据所包含的特征相同。 这种情况下,xx医院想申请使用其他机构的乳腺癌患者数据进行乳腺癌预测模型建模会非常困难。因此可以通过华为TI
实验结果 乳腺癌数据集作业结果 父主题: 横向联邦学习场景
删除批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面批量预测,查找待删除的作业,单击“删除”。 删除操作无法撤销,请谨慎操作。 图1 删除作业 父主题: 批量预测
编辑批量预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 可信联邦学习”,打开可信联邦学习作业页面。 在“联邦预测”页面,选择批量预测的Tab页,找到待开发的作业,单击“开发”。 图1 开发作业 在弹出的对话框中编辑“选择模型”。只允许选择模型,其它作业参数暂时不支持修改。
可信计算节点管理 获取可信计算节点详情 父主题: 计算节点API
联邦预测作业管理 查询联邦预测作业列表 查询训练作业下的成功模型 父主题: 计算节点API
权限隔离。 将TICS资源委托给更专业、高效的其他华为账号或者云服务,这些账号或者云服务可以根据权限进行代运维。 如果华为账号已经能满足您的要求,不需要创建独立的IAM用户,您可以跳过本章节,不影响您使用TICS服务的其它功能。 本章节为您介绍对用户授权的方法,操作流程如创建IAM用户并授予TICS权限所示。
场景描述 数据商业空间中公司B针对公司A的某些数据资产存在业务需求,由于安全性和数据主权的考虑,公司A与公司B基于TICS完成数据资产的交换。基于TICS进行数据资产交换,保证公司A的数据主权、公司B的数据可获得,同时保证交换过程安全可信。 以下是数据拥有方公司A和数据需求方公司B基于TICS平台的操作。
勾选己方数据集发起单方预测。 图1 发起预测 图2 勾选数据集 在“联邦预测”页面批量预测Tab页单击“历史预测”,可以“查看结果”和“作业报告”。 “查看结果”为预测结果存储相对路径。分类作业的预测结果为0/1标签以及正负样本概率,0表示负样本,1表示正样本;回归作业的预测结果为最后的样本得分。
执行实时预测作业 执行实时预测作业 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测Tab页,单击“模型部署”,开始部署模型。 图1 模型部署 模型部署完成后,单击“发起预测”,在系统弹窗中填写要预测
场景描述 本章节以“小微企业信用评分”场景为例。 背景信息 社保、水电气和资助金等数据统一存储在某政务云,由不同的局进行管理,机构想单独申请进行企业相关评分的计算会非常困难。 因此可以由市政数局出面,统一制定隐私规则,审批数据提供方的数据使用申请, 并通过华为TICS可信智能计算平台进行安全计算。
用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面实时预测tab页,查找待删除的作业,单击“删除”。如果作业处于“部署完成“状态,需要单击“停止部署”后,方可删除。 删除操作无法撤销,请谨慎操作。 图1 删除作业
联邦sql分析作业运行过慢,如何提升执行速度? 提升计算并行度 可以在作业开发界面的运行参数中,填写user.task.concurrency参数,提升用户侧此类加密任务的并行度。推荐该值填4-16左右,不建议超过30。 图1 填写参数 tics.task.concurrency
可验证代码示例 数据准备 数据集发布 隐私规则防护 基本计算能力验证 基于MPC算法的高安全级别计算 统计型作业的差分隐私保护 父主题: 多方安全计算场景
创建数据 数据拥有方公司A创建和发布数据集。可供选择有两种数据资产类型:结构化数据集、非结构化数据集。创建数据集后,发布数据集,此时对空间内的所有代理可见。 父主题: 可信数据交换场景
外部数据共享 场景描述 准备数据 发布数据集 创建实时隐匿查询作业 执行实时隐匿查询作业 父主题: 实时隐匿查询场景
测试步骤 数据准备 训练型横向联邦作业流程 评估型横向联邦作业流程 父主题: 横向联邦学习场景
verification failed”。 原因是SQL语句中存在使用隐患字段的情况。 请根据具体提示,涉及以下情形请检查并修改SQL语句: 情形一:直接查询其他参与方的唯一标识、度量数据。 情形二:试图使用唯一标识做条件过滤操作。 情形三:使用直接可以逆推度量数据的简单计算式。 情形四:将标识分组后的度量数据聚合值直接明文呈现。
准备数据 A方提供了待查询的用户ID数据,样例如下: blacklist_query.csv id 1914fd1aef9346e7a1b0a63c95aa918e 6b86b273ff34fce19d6b804eff5a3f57 66985617b4f74d14b4eceeaa25d61f5e
绝输出结果。 如果错误提示是可能泄露的敏感数据(may disclose the value of the measurement…),则查看分组时选择的键是否有问题,不建议选用分类后组内数量非常少的分组键,这种分组键容易在求和后,泄露实际的敏感数据。