检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考步骤六 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization
false } 2. 启动vLLM,如果是使用命令行的方式,指定--quantization "gptq"参数,其他参数请参考Step3 启动推理服务 python -m vllm.entrypoints.openai.api_server --model <your_model> --quantization
节点的类型,枚举值如下: job 训练 labeling 标注 release_dataset 数据集发布 model 模型发布 service 服务部署 mrs_job MRS作业 dataset_import 数据集导入 create_dataset 创建数据集 inputs Array
在DevServer上部署SD WebUI推理服务 本章节主要介绍如何在ModelArts的DevServer环境上部署Stable Diffusion的WebUI套件,使用NPU卡进行推理。 步骤一 准备环境 请参考DevServer资源开通,购买DevServer资源,并确保
Query参数 参数 是否必选 参数类型 描述 type 否 String 作业所属业务。可选值如下: train:训练作业 infer:推理服务 notebook:Notebook作业 status 否 String 作业状态。可选值如下: Queue:排队中 Pending:等待中
储方案使用“SFS(存放数据)+普通OBS桶(存放代码)”,采用分布式训练。 表1 不同场景所需服务及购买推荐 场景 OBS SFS SWR DEW ModelArts VPC ECS EVS 单机单卡 按需购买。(并行文件系统) × 免费。 免费。 包月购买。 免费。 × 按需购买。
模型:结构实现和社区一致,Huggingface模型开箱即用,同时可以快速适配新模型。 调用:提供高性能算子下发和图模式两种方案,兼顾性能和灵活性。 特性:服务调度、特性实现和社区一致,针对昇腾硬件做亲和替换和优化。 接口:离线SDK、在线OpenAI Server和社区完全一致,无缝迁移。 Ascend-vLLM支持的特性介绍
节点的类型,枚举值如下: job 训练 labeling 标注 release_dataset 数据集发布 model 模型发布 service 服务部署 mrs_job MRS作业 dataset_import 数据集导入 create_dataset 创建数据集 inputs Array
请求参数 表3 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 通过调用IAM服务获取用户Token接口获取(响应消息头中X-Subject-Token的值)。 响应参数 状态码: 200 表4 响应Body参数 参数 参数类型
训练作业中存在2个代码目录,一个是从OBS上传到ModelArts Standard训练容器中的代码目录OBS_CODE_DIR,一个是后续构建新镜像步骤ECS中构建新镜像(二选一)中镜像的代码目录CODE_DIR。修改代码如图1。 图1 修改区分训练作业中2个代码目录 使用环境变量SAVE_PA
CogVideoX1.5 5b模型基于DevServer适配PyTorch NPU全量训练指导(6.3.912) 本文档主要介绍如何在ModelArts的DevServer环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVideoX的
的费用为:145.25 + 10.5 + 1750 = 1905.75 元 计费场景三 某公司需要使用ModelArts进行训练模型开发、服务部署,使用规格为CPU: 8 核 32GB的资源池,计划使用时间为1个月(30天)。该公司想要了解采用哪种计费模式才是最具性价比的方式。 计费构成分析
packages=packages) dependencies.append(dependency) 基于自定义镜像创建模型 适用于推理服务的脚本已经内置在自定义镜像中,镜像启动时会自动拉起服务的场景。 from modelarts.session import Session from modelarts
LLaVA模型基于DevServer适配PyTorch NPU推理指导(6.3.906) LLaVA是一种新颖的端到端训练的大型多模态模型,它结合了视觉编码器和Vicuna,用于通用的视觉和语言理解,实现了令人印象深刻的聊天能力,在科学问答(Science QA)上达到了新的高度。
Bit Isolated Pages Count值大于等于64。 A050146 Runtime 其他 ntp异常。 ntpd或者chronyd服务异常。 A050202 Runtime 其他 节点NotReady。 节点不可达,k8sNode存在以下污点之一: node.kubernetes
当数据集使用完成或不再使用时,调用删除数据集接口删除数据集。 前提条件 已获取IAM的EndPoint和ModelArts的EndPoint。 确认服务的部署区域,获取项目名称和ID、获取帐号名和ID和获取用户名和ID。 已经准备好数据源,例如存放在OBS的“/test-obs/class
如果是首次在AI Gallery发布资产则此处会出现勾选“我已阅读并同意《华为云AI Gallery百模千态社区服务声明 》和《 华为云AI Gallery服务协议 》”选项,需要阅读并勾选同意才能正常发布资产。 提交资产发布申请后,AI Gallery侧会自动托管上架,可以前往AI
conf sysctl -p | grep net.ipv4.ip_forward Step2 获取训练镜像 建议使用官方提供的镜像部署训练服务。镜像地址{image_url}参见镜像地址获取。 docker pull {image_url} Step3 启动容器镜像 启动容器镜像
ndSpeed; sh ./scripts/install.sh; sh ./scripts/obs_pipeline.sh 若镜像使用ECS中构建新镜像(二选一)构建的新镜像时,训练作业启动命令中输入: cd /home/ma-user/modelarts/user-job-dir/AscendSpeed;
conf sysctl -p | grep net.ipv4.ip_forward Step2 获取训练镜像 建议使用官方提供的镜像部署训练服务。镜像地址{image_url}参见镜像地址获取。 docker pull {image_url} Step3 启动容器镜像 启动容器镜像