检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
标注ModelArts数据集中的数据 数据标注场景介绍 通过人工标注方式标注数据 通过智能标注方式标注数据 通过团队标注方式标注数据 管理标注作业 父主题: 数据准备与处理
准备模型训练代码 预置框架启动文件的启动流程说明 开发用于预置框架训练的代码 开发用于自定义镜像训练的代码 自定义镜像训练作业配置节点间SSH免密互信 父主题: 使用ModelArts Standard训练模型
ModelArts CLI命令参考 ModelArts CLI命令功能介绍 (可选)本地安装ma-cli ma-cli auto-completion自动补全命令 ma-cli configure鉴权命令 ma-cli image镜像构建支持的命令 ma-cli ma-job训练作业支持的命令
在Notebook中使用Moxing命令 MoXing Framework功能介绍 Notebook中快速使用MoXing mox.file与本地接口的对应关系和切换 MoXing常用操作的样例代码 MoXing进阶用法的样例代码 父主题: 使用Notebook进行AI开发调试
将模型部署为实时推理作业 实时推理的部署及使用流程 部署模型为在线服务 访问在线服务支持的认证方式 访问在线服务支持的访问通道 访问在线服务支持的传输协议 父主题: 使用ModelArts Standard部署模型并推理预测
管理批量推理作业 查看批量服务详情 查看批量服务的事件 管理批量服务生命周期 修改批量服务配置 父主题: 使用ModelArts Standard部署模型并推理预测
ModelArts Standard资源监控 ModelArts Standard资源监控概述 在ModelArts控制台查看监控指标 在AOM控制台查看ModelArts所有监控指标 使用Grafana查看AOM中的监控指标
使用Grafana查看AOM中的监控指标 安装配置Grafana 配置Grafana数据源 配置仪表盘查看指标数据 父主题: ModelArts Standard资源监控
使用自动学习实现零代码AI开发 自动学习简介 使用自动学习实现图像分类 使用自动学习实现物体检测 使用自动学习实现预测分析 使用自动学习实现声音分类 使用自动学习实现文本分类 使用窍门
主流开源大模型基于DevServer适配ModelLink PyTorch NPU训练指导(6.3.907) 场景介绍 准备工作 预训练任务 SFT全参微调训练任务 LoRA微调训练 查看日志和性能 训练脚本说明 常见错误原因和解决方法 父主题: LLM大语言模型训练推理
主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
推理模型量化 使用AWQ量化 使用SmoothQuant量化 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于DevServer适配PyTorch NPU推理指导(6.3.908)
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.908)
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.909)
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.909)
主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910) 推理场景介绍 部署推理服务 推理性能测试 推理精度测试 推理模型量化 eagle投机小模型训练 附录:基于vLLM不同模型推理支持最小卡数和最大序列说明 附录:大模型推理常见问题 父主题: LLM大语言模型训练推理
推理性能测试 语言模型推理性能测试 多模态模型推理性能测试 父主题: 主流开源大模型基于Server适配PyTorch NPU推理指导(6.3.910)
准备工作 准备环境 准备代码 准备镜像 父主题: 主流开源大模型基于Lite Cluster适配PyTorch NPU推理指导(6.3.910)
准备工作 准备资源 准备权重 准备代码 准备镜像 准备Notebook 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)
推理模型量化 使用AWQ量化工具转换权重 使用SmoothQuant量化工具转换权重 使用kv-cache-int8量化 使用GPTQ量化 父主题: 主流开源大模型基于Standard适配PyTorch NPU推理指导(6.3.910)