检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
息就是训练数据集,您可以查看“数据集名称”、“描述”、“数据量”、“标注进度”、“标签总数”、“创建时间”和“操作”,其中“操作”列可执行“管理”和“删除”操作。 “管理”:进入数据集管理页面,单击“开始标注”,可手动标注数据。 “删除”:单击“删除”,弹出“删除数据集”对话框,单击“确认”,即可删除当前数据集。
息就是训练数据集,您可以查看“数据集名称”、“描述”、“数据量”、“标注进度”、“标签总数”、“创建时间”和“操作”,其中“操作”列可执行“管理”和“删除”操作。 “管理”:进入数据集管理页面,单击“开始标注”,可手动标注数据。 “删除”:单击“删除”,弹出“删除数据集”对话框,单击“确认”,即可删除当前数据集。
的全生命周期。 专属定制:根据场景数据自定制模型 。 高效的行业算法 多行业:积累10+行业/场景的预训练模型。 高精度:大部分模型的准确率高于90%。 少数据:训练所需的数据量更少。 智能标注:提升标注效率。 极致性能 依托ModelArts 基础平台,深度软硬件协同。 资源秒级调度,按需使用。
依赖服务会产生相应的费用,详情请见计费说明。 注册华为帐号并开通华为云 申请套件 配置访问权限 注册华为帐号并开通华为云 在使用华为云服务之前您需要注册华为帐号并开通华为云。通过此帐号,只需为使用的服务付费,即可使用所有华为。 进入华为云官网,参考帐号注册指导及界面提示信息,完成帐号注册。
预置可训练模板 HiLens套件提供可训练技能模板开发技能,无需代码,只需自主上传训练数据,快速训练高精度算法模型,并且一键部署至设备。 当前HiLens套件提供HiLens安全帽检测技能,支持自主上传图片数据,构建高精度安全帽检测模型,快速开发安全帽检测技能,实现园区自动检测工人未戴安全帽的行为。
评估模型 工作流会用测试数据评估模型,在“应用开发>评估模型”页面,查看评估结果。 模型评估 图1 模型评估 训练模型的版本、标签数量、测试集数量。单击“下载评估结果”,可保存评估结果至本地。 评估参数对比 图2 评估参数对比 左侧是各个标签数据的精确率、召回率、F1值。勾选
云状识别工作流 支持上传多种云状图数据,构建云状的识别模型,用于高精度识别云的外部形状,进而用于气象预测工作。 刹车盘识别工作流 支持上传多种刹车盘图片数据,构建刹车盘的识别模型,用于快速、准确的识别刹车盘类型。 无监督车盘检测工作流 支持上传车牌图片数据,构建无监督车牌检测模型,用于识别不同场景下的车牌。
在“应用开发”页面版本右侧,单击“更新版本”,即可新增新的应用版本。 图1 更新版本 在“应用开发”页面,您可以选择修改“数据选择”、“模型训练”、“模型评估”、“服务部署”步骤的配置信息,重新部署模板。操作指引如下: 选择数据 训练模型 评估模型 部署服务 父主题: HiLens套件
针对场景领域提供预训练模型,分类准确率高。 提供完善的文本处理能力,支持多种数据格式内容,适配不同场景的业务数据。 可根据使用过程中的反馈持续优化模型。 通用实体抽取工作流 功能介绍 支持自主上传文本数据,构建高精度实体抽取模型,适配不同行业场景的业务数据,快速获得定制服务。 适用场景 知识图谱、文本理解、智能问答、舆情分析等实体抽取场景。
意义。ModelArts Pro提供无监督车牌检测工作流,基于高精度的无监督车牌检测算法,无需用户标注数据,大大降低标注成本和提高车牌检测场景上线效率。 功能介绍 无需标注数据,构建无监督车牌检测模型,用于识别不同场景下的车牌。 适用场景 停车管理、交警执法、车辆保险等交通管理场景。
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言处理
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如准确率、召回率等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选择“第二
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。往往不能一次性获得一个满意的模型,需要反复的调整算法参数、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在自然语言
评估模型 训练得到模型之后,整个开发过程还不算结束,需要对模型进行评估和考察。一次性很难获得一个满意的模型,需要反复的调整算法、数据,不断评估训练生成的模型。 一些常用的指标,如精准率、召回率、F1值等,能帮助您有效的评估,最终获得一个满意的模型。 前提条件 已在视觉套件控制台选
使用预置工作流开发应用流程 自然语言处理套件提供了通用文本分类工作流,您可以通过预置的工作流,自主上传训练数据,训练高精度的文本预测分类模型,适配不同行业场景的业务数据,快速获得定制服务。 图1 使用预置工作流开发应用 表1 使用预置工作流开发应用流程 流程 说明 详细指导 选择自然语言处理套件
在文件中找到“aksk_request”,修改内容有两处: (1)填写获取的AK、SK。 (2)将代码示例中的请求url替换为自定义OCR部署后生成的url,只使用图片中用蓝色标注的字段进行替换。 (3)将代码示例中的# option["side"]="front"替换为: option["template_id"]="xxx"
模板并识别模板中的文字。 首先,请仔细阅读准备工作罗列的要求,提前完成准备工作。使用多模板分类工作流开发应用的步骤如下所示: 步骤1:准备数据 步骤2:新建应用 步骤3:上传多个模板图片 步骤4:定义预处理 步骤5:框选参照字段 步骤6:框选识别区 步骤7:上传训练集 步骤8:评估模板