检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4.46.1),导致llama2系列模型与transformers不兼容导致报错,报错如图所示。
不同模型的tokenizer文件修改内容如下,您可对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4.46.1),导致llama2系列模型与transformers不兼容导致报错,报错如图所示。
使用moxing适配OBS路径,pandas读取文件报错 问题现象 使用moxing适配OBS路径,然后用较高版本的pandas读取OBS文件报出如下错误: 1.‘can't decode byte xxx in position xxx’ 2.‘OSError:File isn't
er文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4.45.0),导致llama2系列模型与transformers不兼容导致报错,报错如图所示。
er文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4.45.0),导致llama2系列模型与transformers不兼容导致报错,报错如图所示。
er文件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 LLama2模型 在当前的软件版本中,由于transformers的版本过高(transformers==4.45.0),导致llama2系列模型与transformers不兼容导致报错,报错如图所示。
additional information. 原因分析 该问题为用户使用VS Code 1.86版本软件导致的,需要用户使用较低版本的VS Code 。 解决方案 使用VS Code 1.85版本软件。下载链接:https://code.visualstudio.com/updates/v1_85。
数据集”,进入数据页面,该页面展示了所有共享的数据集。 搜索业务所需的数据集,请参见查找和收藏资产。 单击目标数据集进入详情页面。 在详情页面可以查看数据集的“描述”、“预览”、“限制”、“版本”和“评论”等信息。 在详情页面单击“下载”。弹出“选择云服务区域”,选择区域后单击“
基础镜像: 引擎版本一:tensorflow_2.1.0-cuda_10.1-py_3.7-ubuntu_18.04-x86_64 引擎版本二: tensorflow_1.15.5-cuda_11.4-py_3.8-ubuntu_20.04-x86_64 引擎版本三:tensorflow_2
件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError:
件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError:
件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError:
件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError:
件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError:
介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Standard适配PyTorch
件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError:
件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError:
件修改内容如下,您可在创建的Notebook中对tokenizer文件进行编辑。 Yi模型 在使用Yi模型的chat版本时,由于transformer 4.38版本的bug,导致在读取tokenizer文件时,加载的vocab_size出现类似如下尺寸不匹配的问题。 RuntimeError:
查看模型评估结果 训练作业运行结束后,ModelArts可为您的模型进行评估,并且给出调优诊断和建议。 针对使用预置算法创建训练作业,无需任何配置,即可查看此评估结果(由于每个模型情况不同,系统将自动根据您的模型指标情况,给出一些调优建议,请仔细阅读界面中的建议和指导,对您的模型进行进一步的调优)。
介绍如何进行预训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 微调训练 SFT全参微调 介绍如何进行SFT全参微调,包括训练数据处理、超参配置、创建训练任务及性能查看。 LoRA微调训练 介绍如何进行LoRA微调训练,包括训练数据处理、超参配置、创建训练任务及性能查看。 父主题: 主流开源大模型基于Standard适配PyTorch