检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
可视化功能完成对训练输出的分析。 PFS是一种经过优化的高性能对象存储文件系统,存储成本低,吞吐量大,能够快速处理高性能计算(HPC)工作负载。在需要使用对象存储服务场景下,推荐使用PFS挂载。 说明: 建议上传时按照128MB或者64MB打包或者切分,使用时边下载边解压后在本地存储读取,以获取更好的读写与吞吐性能。
String NPU驱动版本,物理资源池中含有ascend规格时可填,例如:"C78"。 updateStrategy String 驱动升级策略。可选值如下: force:强制升级,立即升级节点驱动,可能影响节点上正在运行的作业 idle:安全升级,待节点上没有作业运行时进行驱动升级
finetuning_type full 用于指定微调策略类型,可选择值full、lora。 如果设置为full,则对整个模型进行微调。这意味着在微调过程中,除了输出层外,模型的所有参数都将被调整以适应新的任务。 lora_target all 采取lora策略方法的目标模块,默认为all dataset
2、PPO训练暂不支持ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type: full lora,如dpo仅支持此策略;配置如下: finetuning_type: lora lora_target: all
2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type: full lora,如dpo仅支持此策略;配置如下: finetuning_type: lora lora_target: all
2、PPO训练暂不支持 ZeRO-3存在通信问题,如llama3-70B使用ZeRO-3暂不支持 训练策略类型 全参full,配置如下: finetuning_type: full lora,如dpo仅支持此策略;配置如下: finetuning_type: lora lora_target: all
是 list[Step] storages 统一存储对象列表 否 Storage或者list[Storage] policy 工作流的配置策略,主要用于部分运行场景 否 Policy Step Step是组成Workflow的最小单元,体现在DAG中就是一个一个的节点,不同的St
int: 隔离式Job重调度 end_recover_before_downgrade String 本次运行结束后在故障容忍策略降级前所采取的容忍策略,取值范围同end_recover。 表7 JobAlgorithmResponse 参数 参数类型 描述 id String 训练作业算法。目前支持三种形式:
开启高可用冗余:是否开启资源池的高可用冗余,超节点默认开启高可用冗余。 冗余节点分布策略:冗余节点的分布策略,超节点仅支持step均分:每个超节点内预留相同数量的冗余节点。 冗余实例数:此规格设置的高可用冗余实例数量。冗余系数指的是冗余节点分布策略为step均分时,每个超节点内预留的冗余节点数量。 说明:
String NPU驱动版本,物理资源池中含有ascend规格时可填,例如:"C78"。 updateStrategy String 驱动升级策略。可选值如下: force:强制升级,立即升级节点驱动,可能影响节点上正在运行的作业 idle:安全升级,待节点上没有作业运行时进行驱动升级
*节点 & 4*Ascend表示单机4卡,以此类推。 表1 NPU卡数、加速框架、梯度配置取值表 模型 Template 模型参数量 训练策略类型 序列长度cutoff_len 梯度累积值 优化工具(Deepspeed) 规格与节点数 llama2 llama2 7B lora 4096/8192
HCCL通信相关环境变量,通常无需设置该环境变量,建议unset该环境变量。具体参考拥塞控制与纠错配置策略 HCCL_RDMA_SL HCCL通信相关环境变量,通常无需设置该环境变量,建议unset该环境变量。具体参考拥塞控制与纠错配置策略 ACLNN_CACHE_LIMIT 用于缓存cann侧的aclnn算子
必要的网关。 步骤九 开启动态配比调整功能(可选) 动态配比调整功能允许服务在运行时根据负载调整全量和增量的数量配比。例如启动时设置全量个数为2,增量个数为2。开启此功能后,服务能够根据负载的特性自动调整为1:3或3:1的全量增量比。 全量和增量的启动方法无需变化,schedul
int: 隔离式Job重调度 end_recover_before_downgrade String 本次运行结束后在故障容忍策略降级前所采取的容忍策略,取值范围同end_recover。 表10 JobAlgorithmResponse 参数 参数类型 描述 id String
样例yaml配置文件结构分为 base块:基础配置块。 ModelName块:该模型所需配置的参数,如qwen2.5-7b块。 exp_name:实验块,训练策略-序列长度所需参数配置。 样例yaml文件仅展示常用实验配置,如需其他配置需根据样例自行添加,样例截图如下: 步骤二:执行训练任务 进入t
AscendCloud-*.zip unzip AscendCloud-LLM-*.zip Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务如产生产生mc2融合算子错误,可参考mc2融合算子报错 上传tokenizers文件到工作目录中的/mnt/sfs_turbo/tok
所有样本都是已标注状态时,创建团队标注任务也不会收到邮件。 标注任务创建完成后,会将所有未标注状态的样本分配给标注人员。分配采用随机均分的策略,不支持重复分配。 创建团队标注任务 同一个数据集,支持创建多个团队标注作业,指派给同一团队的不同成员,或者指派给其他标注团队。 登录Mo
长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码
CogVideo是一个94亿参数的Transformer模型,用于文本到视频生成。通过继承一个预训练的文本到图像模型CogView2,还提出了多帧速率分层训练策略,以更好地对齐文本和视频剪辑。作为一个开源的大规模预训练文本到视频模型,CogVideo性能优于所有公开可用的模型,在机器和人类评估方面都有很大的优势。
长。另一方面,由于是使用transformers推理,结果也是最稳定的。对单卡运行的模型比较友好,算力利用率比较高。对多卡运行的推理,缺少负载均衡,利用率低。 在昇腾卡上执行时,需要在 opencompass/opencompass/runners/local.py 中添加如下代码