检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“创建评估”。 图1 创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择的数据集,将待评估的提示词和数据集中的变量自动组装成完整的提示词,输入模型生成结果。
模型在测试集上表现不佳,泛化能力差。 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。 对于异常值,视情况进行删除、替换、保留等操作,兼顾模型的收敛与鲁棒性。 删除异常值后,盐度(S)损失收敛正常,如图4。
多样性和一致性是评估LLM生成语言的两个重要方面。 多样性指模型生成的不同输出之间的差异。一致性指相同输入对应的不同输出之间的一致性。 重复惩罚 重复惩罚(repetition_penalty)是在模型训练或生成过程中加入的惩罚项,旨在减少重复生成的可能性。通过在计算损失函数(用于优化模型的指标)时增加
模型在测试集上表现不佳,泛化能力差。 通过统计学方法如计算四分位距、Z-score、样本分布等排查异常值。 通过可视化方法,数据可视化或者使用箱线图进行异常值的排查。 结合数据自身特征,进行异常数据的筛选。 对于异常值,视情况进行删除、替换、保留等操作,兼顾模型的收敛与鲁棒性。 删除异常值后,盐度(S)损失收敛正常,如图4。
X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。 Content-Type 是 String 发送的实体的MIME类型,参数值为“application/json”。 表3 请求Body参数
盘古NLP大模型调优实践 模型调优方法介绍 优化训练数据的质量 优化训练超参数 优化提示词 优化推理超参数 调优典型问题 父主题: 模型调优实践
着深远的影响。它是重要的水资源,提供了大量的饮用水和灌溉水。同时,长江也是中国重要的内河航道,对于货物运输和经济发展具有重要作用。长江中的鱼类种类繁多,是中国淡水渔业的重要基地之一。长江中的典型鱼类包括:1. **中华鲟**:这是一种生活在长江中上游的大型鱼类,以其巨大的体型和古
描述 data String stream=true时,执行工作流的消息以流式形式返回。生成的内容以增量的方式逐步发送回来,每个data字段均包含一部分生成的内容,直到所有data返回,响应结束。 表6 流式输出的数据单元 参数 参数类型 描述 event String 数据单元类型,有以下几种类型:
提示词写作实践 提示词写作常用方法论 提示词写作进阶技巧 提示词应用示例
盘古科学计算大模型调优实践 模型调优方法介绍 数据预处理优化 训练参数优化 评估模型效果 调优典型问题 父主题: 模型调优实践
用户可以通过调用REST网络的API来访问盘古大模型服务,有以下两种调用方式: Token认证:通过Token认证调用请求。 AK/SK认证:通过AK(Access Key ID)/SK(Secret Access Key)加密调用请求。经过认证的请求总是需要包含一个签名值,该签名值以请求者的访问密钥
token解析失败,请检查获取token的方法,请求体信息是否填写正确,token是否正确;检查获取token的环境与调用的环境是否一致。 token超时(token expires) ,请重新获取token,使用不过期的token。 请检查AK/SK是否正确(AK对应的SK错误,不匹配;AK/SK中多填了空格)。
Token在计算机系统中代表令牌(临时)的意思,拥有Token就代表拥有某种权限。Token认证就是在调用API的时候将Token加到请求消息头,从而通过身份认证,获得操作API的权限。 Token的有效期为24小时,需要使用一个Token鉴权时,可以先缓存,避免频繁调用。 如果您的华为云账号已升级为
少于xx个字的文本。”,将回答设置为符合要求的段落。 续写:根据段落的首句、首段续写成完整的段落。 若您的无监督文档没有任何结构化信息,可以将有监督的问题设置为“以下是一篇文章的第一个句子:xxx/第一段落:xxx。请根据以上的句子/段落,续写为一段不少于xx个字的文本。”,再将回答设置为符合要求的段落。
训练参数优化 科学计算大模型的训练参数调优可以考虑学习率参数,学习率(Learning Rate)是模型训练中最重要的超参数之一,它直接影响模型的收敛速度和最终性能: 学习率过高,会导致损失在训练初期快速下降,但随后波动较大,甚至出现NaN(梯度爆炸)的问题。 学习率过低,会导致损
可返回一个资源特征与地址的列表用于用户终端(例如:浏览器)选择。 301 Moved Permanently 永久移动,请求的资源已被永久的移动到新的URI,返回信息会包括新的URI。 302 Found 资源被临时移动。 303 See Other 查看其他地址,使用GET和POST请求查看。
Models)通常指的是具有海量参数和复杂结构的深度学习模型,广泛应用于自然语言处理(NLP)等领域。开发一个大模型的流程可以分为以下几个主要步骤: 数据集准备:大模型的性能往往依赖于大量的训练数据。因此,数据集准备是模型开发的第一步。首先,需要根据业务需求收集相关的原始数据,确保数据的覆盖面和多样性。例如
种类型支持选择。 位置 当前参数在请求信息中的位置,可选Body、Headers或Query。 默认值 参数的默认值。 描述 参数的描述,尽可能准确的描述参数的含义和要求,可提升Agent提取参数的准确率。 参数校验 可设置当前参数的校验规则。 必填 指定该参数是否为必填项。 响应参数
业模型的定制化流程与高效提示词构建方法,确保在实际应用中充分发挥盘古大模型的行业优势,提升业务效果。 最佳实践 提示词写作实践 Agent应用实践 06 API 通过API文档的概述、NLP大模型API和科学计算大模型API的详细介绍,您将全面理解如何调用和集成盘古大模型的各类接
生成的内容结尾必须要引导观众购买; 6.生成的内容必须紧扣产品本身,突出产品的特点,不能出现不相关的内容; 7.生成的内容必须完整,必须涵盖产品介绍中的每个关键点,不能丢失任何有价值的细节; 8.生成的内容必须符合客观事实,不能存在事实性错误; 9.生成的内容必须语言通顺; 10.生成的内容中不能出现“带货口播”等这一类字样;