检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
原因分析二 本地系统为Linux,由于使用root用户安装VS Code,打开VS Code显示信息It is not recommended to run Code as root user 解决方法二 请使用非root用户安装VS Code后,回到ModelArts控制台界面再次单击界面上的“VS
成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建完成后,单击“远程登录”,后续安装Docker等操作均在该ECS上进行。 注意:CPU架构必须选择鲲鹏计算,镜像推荐选择EulerOS。 图1 购买ECS Step2 安装Docker 检查docker是否安装。 docker
环境配置故障 Notebook提示磁盘空间已满 Notebook中使用Conda安装Keras 2.3.1报错 Notebook中安装依赖包报错ERROR: HTTP error 404 while getting xxx Notebook中已安装对应库,仍报错import numba
使用此类镜像做基础镜像,安装自己需要的引擎版本和依赖包,可扩展性更高。并且这些镜像预置了一些开发环境启动所必要的配置,用户无需对此做任何适配,安装所需的软件包即可使用。 此类镜像为最基础的镜像,主要应对用户做自定义镜像时基础镜像太大的问题,所以镜像中未安装任何组件;如果需使用OBS
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
PU、Memory等)的使用情况并上报到AOM,用户可直接在AOM上查看默认配置好的基础指标,也支持用户自定义一些指标项上报到AOM查看。 此外,还支持在ModelArts Lite Cluster上安装Prometheus开源监控工具,方便用户使用Prometheus工具在Lite
表单击“部署”,可以将订阅的ModelArts模型部署为“在线服务”、“批量服务”或“边缘服务”,详细操作步骤请参见部署服务。 使用订阅的HiLens技能: 在“产品订购 > 订单管理 > AI Gallery”页面,单击技能名称左侧,在技能的版本信息单击“安装”即可安装技能至设备上使用,详情请参见安装技能。
部署在线服务出现报错No CUDA runtime is found 问题现象 部署在线服务出现报错No CUDA runtime is found,using CUDA_HOME='/usr/local/cuda'。 原因分析 从日志报错信息No CUDA runtime is
peer-memory四个软件。 但是如果nvidia和cuda是使用runfile(local)方式安装的,那么需要在下一步中再次卸载。 若使用nvidia run包直接安装的驱动,需要找到对应的卸载命令。 sudo /usr/bin/nvidia-uninstall sudo
用云监控服务。 当前还不支持在CES界面直接一键安装监控,需要登录到服务器上执行以下命令安装配置Agent。其它region的安装请参考单台主机下安装Agent。 cd /usr/local && curl -k -O https://obs.cn-north-4.myhuaweicloud
本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
训练的小模型进行eagle推理。 步骤一:安装Eagle Eagle训练适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/spec_decode/EAGLE目录下。 在目录下执行如下命令,即可安装 EAGLE。 bash build.sh
本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd
仅适用于GPU资源监控。 前提条件 裸金属服务器需要安装driver、cuda、fabric-manager软件包。 步骤一:安装Docker 使用Docker官方脚本安装最新版Docker: curl https://get.docker.com | sh sudo systemctl
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y
算”,“镜像”选择“公共镜像”,推荐使用Ubuntu18.04的镜像。 安装Docker。 以Linux aarch64架构的操作系统为例,获取Docker安装包。您可以使用以下指令安装Docker。关于安装Docker的更多指导内容参见Docker官方文档。 curl -fsSL
可能系统资源不足、如内存不足、内存泄露。 硬件故障、如IB网络或者GPU互联设备故障等。 没安装nvidia-fabricmanager组件或被误卸载。 处理方法 如果未安装fabricmanager,则需安装改组件。 如果已安装fabricmanager,运行以下命令重启fabricmanager.service。
在SWR服务页面创建镜像组织。 图2 创建镜像组织 Step3 安装Docker 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker 配置IP转发,用于容器内的网络访问。执行以下命令查看net
error from cudaGetDeviceCount() 原因分析 经过对裸金属服务器排查,发现nvidia-drvier和cuda都已安装,并且正常运行。nvidia-fabricmanager服务可以使单节点GPU卡间互联,在多卡GPU机器上,出现这种问题可能是nvidia-fabricmanger异常导致。