检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
在SNAT规则页签下,单击“添加SNAT规则”。 在弹出的“添加SNAT规则页面”,配置SNAT规则: 使用场景:选择“虚拟私有云”。 子网:选择“使用已有”,选择子网。 弹性公网IP:勾选创建的弹性公网IP。 单击“确定”。 配置DNAT规则。 通过添加DNAT规则,则可以通过映
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 执行如下脚本进行权重转换生成量化系数,详细参数解释请参见https://github.com/NVIDIA/TensorR
r_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续
r_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续
or_output/plog”文件夹下。若用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续
or_output/plog”文件夹下。若用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续
用户需要修改,可添加并自定义该变量。 SAVE_INTERVAL 10 表示训练间隔多少step,则会保存一次权重文件。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVER
r_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续
r_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续
r_output/plog”文件夹下。如果用户需要修改,可添加并自定义该变量。 CONVERT_MG2HF TRUE 训练完成的权重文件默认不会自动转换为Hugging Face格式权重。如果需要自动转换,则在运行脚本添加变量CONVERT_MG2HF并赋值TRUE。如果用户后续
--benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 脚本运行完后,测试结果保存在benchmark_serving.csv中,示例如下图所示。
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/
--benchmark-csv:结果保存路径,如benchmark_serving.csv。 --served-model-name: 选择性添加, 选择性添加,在接口中使用的模型名;如果没有配置,则默认为tokenizer。 --num-scheduler-steps: 需和服务启动时配置
--calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-han-lab/pile-val-backup,注意需指定到val.jsonl的上一级目录。 详细说明可以参考vLLM官网:https://docs.vllm.ai/en/