检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf llama2-13b https://huggingface.co/meta-llama/Llama-2-13b-chat-hf llama2-70b https://huggingface
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
llama2-7b https://huggingface.co/meta-llama/Llama-2-7b-chat-hf llama2-13b https://huggingface.co/meta-llama/Llama-2-13b-chat-hf llama2-70b https://huggingface
2u", "instance_count": 1, "src_path": "https://infers-data.obs.xxx.com/xgboosterdata/", "dest_path": "https://infers-data.obs.xxx.com/output/",
llama2-70b https://huggingface.co/meta-llama/Llama-2-70b-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf (推荐) 4 llama3 llama3-8b https://huggingface
Access Key”:填写访问密钥的SK。 图2 填写区域和访问密钥 查看认证结果。 在Event Log区域中,当提示如下类似信息时,表示访问密钥添加成功。 16:01Validate Credential Success: The HUAWEI CLOUDcredential is valid
Settings > Project:PythonProject > Python Interpreter”,单击设置图标,再单击“Add”,添加一个新的interpreter。 选择“Existing server configuration”,在下拉菜单中选择上一步配置好的SSH
p4(需申请)/modelarts.vm.ai1.a310(需申请),需申请权限才能使用的规格请在华为云创建工单,由ModelArts运维工程师添加权限。 instance_count 是 Integer 模型部署的实例数,当前限制最大实例数为128,如需使用更多的实例数,需提交工单申请。
开关。对于同一个数据集,可以创建多个团队标注任务。 图2 打开启用团队标注 只有当创建团队标注任务时,标注人员才会收到邮件。创建标注团队及添加标注团队的成员并不会发送邮件。此外,当所有样本都是已标注状态时,创建团队标注任务也不会收到邮件。 标注任务创建完成后,会将所有未标注状态的
读写权限:readwrite(创建开发环境实例modelarts:notebook:create仅支持配置readwrite) 如果需要在一个自定义策略中添加多个不同的sfsOption,需要“Statement”中新增JSON结构体,例如: { "Version": "1.1",
OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging Face格式权重输出的路径(确保添加CONVERT_MG2HF环境变量并设置为True)。 分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。OR
OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging Face格式权重输出的路径(确保添加CONVERT_MG2HF环境变量并设置为True)。 分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。OR
5-7b块。 exp_name:实验块,训练策略-序列长度所需参数配置。 样例yaml文件仅展示常用实验配置,如需其他配置需根据样例自行添加,样例截图如下: 步骤二:执行训练任务 进入test-benchmark目录执行训练命令,可以多次执行,卡数及其它配置参考NPU卡数取值表按自己实际情况决定
方法二:用户在Notebook中直接编辑scripts/llama2/1_preprocess_data.sh脚本,自定义环境变量的值,并在脚本的首行中添加 cd /home/ma-user/work/llm_train/AscendSpeed/ModelLink 命令,随后在Notebook中运行该脚本。
OUTPUT_SAVE_DIR:训练完成后指定的输出模型路径。 HF_SAVE_DIR:训练完成的权重文件自动转换为Hugging Face格式权重输出的路径(确保添加CONVERT_MG2HF环境变量并设置为True)。 分别单击“输入”和“输出”的数据存储位置,如图所示,选择OBS桶中指定的目录。OR
索引,此处可以根据此时间进行搜索。可选值如下: month:搜索往前30天至今天内添加的样本 day:搜索昨天(往前1天)至今天内添加的样本 yyyyMMdd-yyyyMMdd:搜索指定时间段内添加的样本,格式为“起始日期-结束日期”,查询天数不能超过30天。例如:“201909
mpressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下: 开始之前,请确保安装了以下库: git clone https://github.com/vllm-project/llm-compressor.git cd llm-compressor pip install
下载SD基础模型,SD基础模型的官网下载地址。 https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0/resolve/main/sd_xl_base_1.0.safetensors https://huggingface.c
#在myenv的环境中安装名字为numpy的package conda install -c https://conda.anaconda.org/anaconda numpy #使用源 https://conda.anaconda.org/anaconda 安装numpy conda
cess_data 【可选】如已有预处理完成数据可指定此目录,训练过程中会优先加载此目录,跳过数据预处理过程;默认无此参数,用户自定义自行添加 ORIGINAL_HF_WEIGHT /home/ma-user/work/models/llama-2-13b-chat-hf 【必改