检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
> 提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“创建评估”。 图1 创建评估 选择评估使用的变量数据集和评估方法。 评估用例集:根据选择
提示词开发”。 在工程任务列表页面,找到所需要操作的工程任务,单击该工程任务右侧“撰写”。 图1 提示词工程 在“撰写”页面,选择左侧导航栏中的“候选”。在候选列表中,勾选需要进行横向比对的提示词,并单击“横向比较”。 图2 横向比较 进入到横向比较页面,下拉页面至“提示词效果比较”模块,比较
默认格式:平台默认的格式。 在默认格式中,context和target是键值对。示例如下: {"context": "你好,请介绍自己", "target": "我是盘古大模型"} 盘古格式:训练盘古大模型时,需要将数据集格式发布为“盘古格式”。 在盘古格式中,context和target
景),帮助模型理解并捕捉预期风格。 可以在提示词中,明确描述回复风格的要求。例如,若希望模型回答更精炼,可以提示: 你的回复“需要简洁精炼”、“仅包括最重要的信息”或“专注于主要结论”。 若希望模型输出遵循特定格式,可以在提示词中明确格式要求,或使用占位符和模板结构,让模型填充内容。例如:
域的数据集上进一步训练,使模型能够更有效地应对具体的任务需求。这一阶段使模型能够精确执行如文案生成、代码生成和专业问答等特定场景中的任务。在微调过程中,通过设定训练指标来监控模型的表现,确保其达到预期的效果。完成微调后,将对用户模型进行评估并进行最终优化,以确保满足业务需求,然后将其部署和调用,用于实际应用。
列:每列表示一种特征。每列的数据类型应保持一致,不同列可以具有不同的数据类型。 顺序:表格中的行通常按照特定顺序排列。 行数:数据表的行数应大于5000行。 维度:数据的维度(列数)应大于10维。 数据完整性:必须确保数据中没有缺失值。 构建预测大模型数据集流程 在ModelArts Studio
锚框的长边和短边的比例 定义检测物体锚框的长宽比。通过设置不同的长短比例,模型可以更好地适应多种尺寸和形状的物体。 锚框大小 指锚框的初始尺寸。锚框是物体检测中的一个关键概念,通过合理设置,可以帮助模型检测出多种尺寸的目标。 框重叠比例阈值 用于判定模型预测的边界框与真实边界框之间是否为同一物体。该
查看提示词评任务状态 单击“评估名称”,进入评估任务详情页,可以查看详细的评估进度,例如在图2中有10条评估用例,当前已评估8条,剩余2条待评估。 图2 查看评估进展 评估完成后,可以查看每条数据的评估结果。 在评估结果中,“预期结果”表示变量值(问题)所预设的期望回答,“生成结果”表示模型回复的
查看科学计算大模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练结果、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化
真实值和预测值在图表中的对比情况。 准确率 模型预测结果中,所有预测正确的样本占总样本的比例。数值越高,模型效果越好。 精准率 精准率是指在模型预测为正类的样本中,真正类样本的比例。数值越高,表明模型在检测正类样本时的准确性越高。 召回率 召回率是指在所有实际为正类的样本中,被模型正确预
查看NLP大模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练结果、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化
结束节点可能会有多个输入,但是只能有一个输出值,因此需要开发者在“指定回复”中合并多个输入值为一个输出值。 结束节点为必选节点,需要配置于所有场景中。 结束节点配置步骤如下: 拖动左侧任意节点至画布中,以显示结束节点。 单击画布中的结束节点以打开节点配置页面。 参照表9,完成结束节点的配置。 表9
应用提示词实现智能客服系统的意图匹配 应用场景说明:智能客服系统中,大模型将客户问题匹配至语义相同的FAQ问题标题,并返回标题内容,系统根据匹配标题调出该FAQ问答对,来解答客户疑问。 父主题: 提示词应用示例
连接该节点和“结束”节点,单击该节点进行配置。 在“参数配置”中,配置输入、输出参数。 在“模型配置”中,选择已经部署的NLP大模型并进行参数配置,在“提示词配置”中,配置提示词。 如果“模型配置 > 模型选择”中没有可供选择的NLP大模型,请完成模型部署操作,详见《用户指南》“开发盘古NLP大模型
型”中进行选择。 高级设置 checkpoints:在模型训练过程中,用于保存模型权重和状态的机制。 关闭:关闭后不保存checkpoints,无法基于checkpoints执行续训操作。 自动:自动保存训练过程中的所有checkpoints。 自定义:根据设置保存指定数量的checkpoints。
例如,在文档问答任务中,任务本质不是生成,而是抽取任务,需要让模型“从文档中抽取出问题的答案,不能是主观的理解或解释,不能修改原文的任何符号、字词和格式”, 如果使用“请阅读上述文档,并生成以下问题答案”,“生成”一词不是很恰当,模型会引入一些外部知识。 例如,在构造泛化问题的任务中,需要基
查看CV大模型训练状态与指标 模型启动训练后,可以在模型训练列表中查看训练任务的状态,单击任务名称可以进入详情页查看训练结果、训练任务详情和训练日志。 查看模型训练状态 在模型训练列表中查看训练任务的状态,各状态说明详见表1。 表1 训练状态说明 训练状态 训练状态含义 初始化
empty. 检查数据集文件是否还存在于原先的OBS桶中。 download obs file failed. 请检查网络是否正常,是否可以访问OBS桶中的数据。 数据评估 annotate type is invalid. 请检查上传的数据中,使用的数据标注类型、数据标注要求与平台要求的是否一致。
续费 包周期服务到期后,您可以通过手动续费来延长服务的有效期。 包周期服务到期后,如果在保留期结束前未完成续费,后续则不能再对已过保留期的服务进行续费操作,需重新购买对应的服务。
如何判断盘古大模型训练状态是否正常 判断训练状态是否正常,通常可以通过观察训练过程中Loss(损失函数值)的变化趋势。损失函数是一种衡量模型预测结果和真实结果之间的差距的指标,正常情况下越小越好。 您可以从平台的训练日志中获取到每一步的Loss,并绘制成Loss曲线,来观察其变化趋势。一般来