检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
请参考创建模型的自定义镜像规范和从0-1制作自定义镜像并创建模型,制作自定义镜像。 推荐在开发环境Notebook中调试模型包,制作自定义镜像。请参考在开发环境中构建并调试推理镜像和无需构建直接在开发环境中调试并保存镜像用于推理。 更多的自定义脚本代码示例,请参考自定义脚本代码示例。 模型包里面必须
w_single_bar/demo.jpeg</img>\n图中的狗是什么品种?" }, { "from": "assistant", "value": "图中是一只拉布拉多犬。" }, {
w_single_bar/demo.jpeg</img>\n图中的狗是什么品种?" }, { "from": "assistant", "value": "图中是一只拉布拉多犬。" }, {
在“未标注”页签下,单击“标签集”右侧的加号,在弹出“新增标签”对话框中,设置“标签名称”和“标签颜色”,然后单击“确定”完成标签添加。 修改标签 在“已标注”页签中“全部标签”的下方操作列,选择需要修改的标签,单击操作列的编辑图标,在弹出“修改标签”对话框中,修改“标签名称”或“标签颜色”,然后单击“确定”完成标签修改。
过滤xml文件 xml中没有标注“object” 过滤xml文件 xml中没有矩形框“bndbox” 过滤xml文件 某些标注“object”中没有矩形框“bndbox” 过滤标注“object” 图片经过裁剪后,xml文件中宽高不符 修改错误宽高参数为图片真实宽高 xml中没有“width”、“height”字段
使用AWQ量化 AWQ(W4A16)量化方案能显著降低模型显存以及需要部署的卡数。降低小batch下的增量推理时延。支持AWQ量化的模型列表请参见表3。 本章节介绍如何使用AWQ量化工具实现推理量化。 量化方法:per-group Step1 模型量化 可以在Huggingfac
资源池”页面。 在资源池列表中,选择需要进行驱动升级的资源池,在右侧的操作列,单击“ > 驱动升级”。 在“驱动升级”弹窗中,会显示当前专属资源池的驱动类型、实例数量、当前版本、目标版本、升级方式、升级范围和开启滚动开关。 目标版本:在目标版本下拉框中,选择一个目标驱动版本。对于
登录ModelArts管理控制台,选择“AI专属资源池 > 弹性集群Cluster”,进入“Standard资源池”页面。 在资源池列表中,选择目标资源池右侧操作列的“ > 工作空间迁移”。 在弹出的“迁移专属资源池”中,选择要迁移的“目标工作空间”,单击“确定”。 图1 工作空间迁移 子用户仅限于对自己创建的工作空间下的资源池进行迁移操作。
图1 下拉选择标注类型 在标注作业标注详情中,展示此标注作业下全部数据。 标注视频 标注作业详情页中,展示了此数据集中“未标注”、“已标注”和“全部”的视频。 在“未标注”页签左侧视频列表中,单击目标视频文件,打开标注页面。 在标注页面中,播放视频,当视频播放至待标注时间时,单击
scripts/install.sh 文件中,找到需要git clone的文件,如下列所示。运行git clone命令,并git checkout切换到指定的版本。注意:针对Megatron-LM下载完成后,需要将megatron文件夹复制至ModelLink中。 git clone https://gitee
数据集版本发布失败 出现此问题时,表示数据不满足数据管理模块的要求,导致数据集发布失败,无法执行自动学习的下一步流程。 请根据如下几个要求,检查您的数据,将不符合要求的数据排除后再重新启动自动学习的训练任务。 ModelArts.4710 OBS权限问题 ModelArts在跟O
在“声音分类”节点中,待训练状态由“运行中”变为“运行成功”,即完成模型的自动训练。 训练完成后,您可以单击声音分类节点上方的按钮,查看相关指标信息,如“准确率”、“评估结果”等。 表1 评估结果参数说明 参数 说明 recall:召回率 被用户标注为某个分类的所有样本中,模型正确预测
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化工具转换权重 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见支持的模型列表和权重文件。 本章节介绍如何在Noteboo
使用SmoothQuant量化 SmoothQuant(W8A8)量化方案能降低模型显存以及需要部署的卡数。也能同时降低首token时延和增量推理时延。支持SmoothQuant(W8A8)量化的模型列表请参见表3。 本章节介绍如何使用SmoothQuant量化工具实现推理量化。
景的深刻理解,这依赖于经验。 调整参数和超参数。 神经网络中:学习率、学习衰减率、隐藏层数、隐藏层的单元数、Adam优化算法中的β1和β2参数、batch_size数值等。 其他算法中:随机森林的树数量,k-means中的cluster数,正则化参数λ等。 增加训练数据作用不大。
界面。 用鼠标框选图片中的物体所在区域,然后在弹出的对话框中选择标签颜色,输入标签名称,例如此示例中的“yunbao”,按“Enter”键完成此标签的添加。标注完成后,左侧图片目录中此图片的状态将显示为“已标注”。 数据标注的更多说明: 您可以在图片上方或下方单击左右切换键,或者
或者对于模型结构中的输入进行shape的打印,并明确输入的batch。 一般来说,推理时指定的inputShape和用户的业务及推理场景紧密相关,可以通过原始模型推理脚本或者网络模型进行判断。需要把Notebook中的模型下载到本地后,再放入netron官网中,查看其inputShape。
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。
被用户标注为某个分类的所有样本中,模型正确预测为该分类的样本比率,反映模型对正样本的识别能力。 precision:精确率 被模型预测为某个分类的所有样本中,模型正确预测的样本比率,反映模型对负样本的区分能力。 accuracy:准确率 所有样本中,模型正确预测的样本比率,反映模型对样本整体的识别能力。