检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
通过JupyterLab在线使用Notebook实例进行AI开发 使用JupyterLab在线开发和调试代码 JupyterLab常用功能介绍 在JupyterLab使用Git克隆代码仓 在JupyterLab中创建定时任务 上传文件至JupyterLab 下载JupyterLab文件到本地
成。 使用模型服务:在MaaS体验部署完成的7个模型服务,测试推理结果。 在ModelArts Studio左侧导航栏中,选择“模型体验”进入体验页面。 在“模型体验”页面,单击“请选择服务”,在模型列表中选择模型服务,单击“确定”。 在“模型体验”页面右上角,单击“参数设置”,
ModelArts部署在线服务时,如何避免自定义预测脚本python依赖包出现冲突? 导入模型时,需同时将对应的推理代码及配置文件放置在模型文件夹下。使用Python编码过程中,推荐采用相对导入方式(Python import)导入自定义包。 如果ModelArts推理框架代码内
ModelArts在线服务处于运行中时,如何填写request header和request body? 问题现象 部署在线服务完成且在线服务处于“运行中”状态时,通过ModelArts console的调用指南tab页签可以获取到推理请求的地址,但是不知道如何填写推理请求的header及body。
时序预测-time_series_v2算法部署在线服务预测报错 问题现象 在线服务预测报错:ERROR: data is shorter than windows。 原因分析 该报错说明预测使用的数据行数小于window超参值。 在使用订阅算法时序预测-time_series_v
根据业务场景搜索所需的免费案例,单击案例进入详情页面。 在详情页面您可以查看案例的“使用说明”、“关联资产”、“输出样例”、“体验Demo”和“评论”等信息。 部分案例可能发布者未提供“关联资产”、“输出样例”或“体验Demo”。 在详情页面单击“订阅”。 案例被订阅后,详情页的“订阅”按钮显示为“已订阅”,订
”,完成订单信息确认后单击“确定”开始构建AI应用。 当AI应用状态变为“运行中”时,表示启动成功。在AI应用详情页的“应用”页签,可以在线体验应用。 父主题: 发布和管理AI Gallery中的AI应用
kflow。 删除后的Workflow无法恢复,请谨慎操作。 删除Workflow后,对应的训练作业和在线服务不会随之被删除,需要分别在“模型训练>训练作业”和“模型部署>在线服务”页面中手动删除任务。 父主题: 管理Workflow
rts团队已于2021年上线新版训练,力求解决存在的历史问题,并为新特性提供高性能、高易用、可扩展、可演进的底座,给用户提供更好的AI训练体验,打造易用、高效的AI平台。 下线旧版训练管理对现有用户的使用是否有影响? 正在使用的训练作业不受影响,但是用户无法使用旧版训练创建新的作业。
iles and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例:
iles and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Qwen/Qwen-VL-Chat为例:
iles and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging Face 官方提供的命令行工具,自带完善的下载功能。具体步骤可参考:HF-Mirror中的使用教程。完成依赖安装和环境变量配置后,以Llama2-70B为例:
实时推理的部署及使用流程 在创建完模型后,可以将模型部署为一个在线服务。当在线服务的状态处于“运行中”,则表示在线服务已部署成功,部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。访问在线服务时,您可以根据您的业务需求,分别确认使用何种认证方式、
如高性能计算、媒体处理、文件共享和内容管理和Web服务等。 说明: 高性能计算:主要是高带宽的需求,用于共享文件存储,比如基因测序、图片渲染这些。 如大数据分析、静态网站托管、在线视频点播、基因测序和智能视频监控等。 如高性能计算、企业核心集群应用、企业应用系统和开发测试等。 说明: 高性能计算:主要是高速率、高IO
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
ORIGINAL_HF_WEIGHT:加载tokenizer与Hugging Face权重对应的存放目录地址。 否,设置以下变量 ORIGINAL_HF_WEIGHT:加载tokenizer与Hugging Face权重对应的存放地址 在“输出”的输入框内设置变量:OUTPUT_SAVE
克隆GitHub开源仓库文件到JupyterLab 上传OBS文件到JupyterLab 上传远端文件至JupyterLab 父主题: 通过JupyterLab在线使用Notebook实例进行AI开发
解压之后文件大小4.1GB。该数据集是从[imagenet-2012]数据集中筛选的少量数据集。 准备预训练权重。 下载Hugging Face权重。 迁移适配。 入口函数train.py导入自动迁移接口。 执行以下命令,导入自动迁移接口。 import torch_npu from
若用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf
如果用户要自定义数据处理脚本并且单独执行,同样以 llama2 为例。注意脚本中的python命令分别有Hugging Face 转 Megatron格式,以及Megatron 转 Hugging Face格式,而脚本使用hf2hg、mg2hf参数传递来区分。 方法一:用户可打开scripts/llama2/2_convert_mg_hf