检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
图2 查看网络配置 图3 打通VPC VPC下创建弹性云服务器 登录弹性云服务器ECS控制台,单击右上角“购买弹性云服务器”,进入购买弹性云服务器页面,完成基本配置后单击“下一步:网络配置”,进入网络配置页面,选择1中打通的VPC,完成其他参数配置,完成高级配置并确认配置,下发购买弹
Standard推理部署 ModelArts Standard推理服务访问公网方案 端到端运维ModelArts Standard推理服务方案 使用自定义引擎在ModelArts Standard创建AI应用 使用大模型在ModelArts Standard创建AI应用部署在线服务 第三方推理框架迁移到ModelArts
header和request body 问题现象 部署在线服务完成且在线服务处于“运行中”状态时,通过ModelArts console的调用指南tab页签可以获取到推理请求的地址,但是不知道如何填写推理请求的header及body。 原因分析 在线服务部署完成且服务处于运行中状态后,可以通过
模型的版本列表的状态显示为“就绪”时表示模型可以使用。 步骤3:使用订阅模型部署在线服务 模型订阅成功后,可将此模型部署为在线服务 在展开的版本列表中,单击“部署 > 在线服务”跳转至部署页面。 在部署页面,参考如下说明填写关键参数。 “名称”:自定义一个在线服务的名称,也可以使
部署上线失败 出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新部署在线服务。如果重试超过3次仍无法解决,请获取如下信息,并联系华为云技术支持协助解决故障。 获取服务ID。 进入“部署上线>在线服务”页面,在服务列表中找到自动学习任务中部署的在线服务,自动学习部署的
API由W3C标准化。 WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。在WebSocket API中,浏览器和服务器只需要完成一次握手,两者之间就可以建立持久性的连接,并进行双向数据传输。 前提条件 在线服务部署时需选择“升级为WebSocket”。
在Linux上安装配置Grafana 适用场景 本章节适用于在Linux操作系统的PC中安装配置Grafana。 前提条件 一台可访问外网的Ubuntu服务器。如果没有请具备以下条件: 准备一台ECS服务器(建议规格选8U或者以上,镜像选择Ubuntu,建议选择22.04版本,本
m-scheduler-steps个token。开启投机推理后无需配置该参数。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使
--block-size:PagedAttention的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
--block-size:PagedAttention的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
--block-size:PagedAttention的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
--block-size:PagedAttention的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
部署图像分类服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待服务部署节点的状态变为“等待输入”时,双击“服务部署”进入配置详情页,完成资源的参数配置操作。
使用此类镜像做基础镜像,安装自己需要的引擎版本和依赖包,可扩展性更高。并且这些镜像预置了一些开发环境启动所必要的配置,用户无需对此做任何适配,安装所需的软件包即可使用。 此类镜像为最基础的镜像,主要应对用户做自定义镜像时基础镜像太大的问题,所以镜像中未安装任何组件;如果需使用OBS
什么是边缘节点? 边缘节点是您自己的边缘计算设备,用于运行边缘应用,处理您的数据,并安全、便捷地和云端应用进行协同。 父主题: 边缘服务
/home/ma-user/ws/llm_train/LLaMAFactory 构建新镜像: docker build -t <镜像名称>:<版本名称> . 如无法访问公网则需配置代理,增加`--build-arg`参数指定代理地址确保访问公网。 docker build --build-arg "https_proxy=http://xxx
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64
通过AK/SK认证的方式访问在线服务 如果在线服务的状态处于“运行中”,则表示在线服务已部署成功。部署成功的在线服务,将为用户提供一个可调用的API,此API为标准Restful API。用户可以通过AK/SK签名认证方式调用API。 使用AK/SK认证时,您可以通过APIG SDK访问,也可以通过ModelArts
0/0、端口为8080的请求放行。 否 str cluster_id 专属资源池ID,默认为空,不使用专属资源池。使用专属资源池部署服务时需确保集群状态正常;配置此参数后,则使用集群的网络配置,vpc_id参数不生效;与下方real-time config中的cluster_id同时配置时,优先使用real-time
单扩容。 Step3 部署在线服务 将Step2 部署模型中创建的AI应用部署为一个在线服务,用于推理调用。 在ModelArts控制台,单击“部署上线 > 在线服务 > 部署”,开始部署在线服务。 图6 部署在线服务 设置部署服务名称,选择Step2 部署模型中创建的AI应用。