检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
如出现错误,可能是机器上的NPU设备没有正常安装,或者NPU镜像被其他容器挂载。请先正常安装固件和驱动,或释放被挂载的NPU。 检查docker是否安装。 docker -v #检查docker是否安装 如尚未安装,运行以下命令安装docker。 yum install -y docker-engine.aarch64
分离部署 PD分离部署使用说明 父主题: 推理关键特性使用
服务部署、启动、升级和修改时,拉取镜像失败如何处理? 问题现象 服务部署、启动、升级和修改时,拉取镜像失败。 原因分析 节点磁盘不足,镜像大小过大。 解决方法 首先考虑优化镜像,减小节点磁盘的占用。 优化镜像无法解决问题,请联系系统管理员处理。 父主题: 服务部署
USE_OPENAI:仅在服务入口实例生效,用于配置api-server服务是否使用openai服务,默认为1。当配置为1时,启动服务为openai服务;当配置为0时,启动服务为vllm服务。 其中常见的参数如下: --host:服务部署的IP --port:服务部署的端口,注意如果不同实例部署在一台机器上,不同实例需要使用不同端口号
仅适用于GPU资源监控。 前提条件 裸金属服务器需要安装driver、cuda、fabric-manager软件包。 步骤一:安装Docker 使用Docker官方脚本安装最新版Docker: curl https://get.docker.com | sh sudo systemctl
N文件时,则需要根据配置文件生成映射文件;如果模型输入为文件时,则不需要。 操作步骤 登录ModelArts管理控制台,在左侧导航栏中选择“模型部署 > 批量服务”,默认进入“批量服务”列表。 在批量服务列表中,单击左上角“部署”,进入“部署”页面。 在部署页面,填写批量服务相关参数。
具体原因。 镜像健康检查配置问题,需修复代码后重新制作镜像创建模型后部署服务。了解镜像健康接口配置请参考模型配置文件编写说明中health参数说明。 模型健康检查配置问题,需重新创建模型或者创建模型新版本,配置正确的健康检查,使用新的模型或版本重新部署服务。了解模型健康检查请参考
务可以正常部署成功。 如果三次重试后依然没有足够的资源,则本次服务部署失败。参考以下方式解决: 如果是在公共资源池部署服务,可等待其他用户释放资源后,再进行服务部署。 如果是在专属资源池部署服务,在满足模型需求的前提下,尝试选用更小的容器规格或自定义规格,进行服务部署; 如果当前
和创建模型界面上配置的端口。确认两处端口保持一致。模型创建界面如果不填端口信息,则ModelArts会默认监听8080端口,即镜像代码中启用的端口必须是8080。 图2 自定义镜像中的代码开放的端口 图3 创建模型界面上配置的端口 健康检查配置有问题 镜像如果配置了健康检查,服务启动失败,从以下两个方面进行排查:
执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build --build-arg
构建新镜像。 注意:训练作业的资源池以及ECS都需要联通外网,否则会安装和下载失败。 ECS获取和上传基础镜像 创建ECS。 下文中介绍如何在ECS中构建一个训练镜像,请参考ECS文档购买一个Linux弹性云服务器。完成网络配置、高级配置等步骤,可根据默认选择,或进行自定义。创建
调用MaaS部署的模型服务 在ModelArts Studio大模型即服务平台部署成功的模型服务支持在其他业务环境中调用。 约束限制 只有“状态”是“运行中”的模型服务才支持被调用。 步骤一:获取API Key 在调用MaaS部署的模型服务时,需要填写API Key用于接口的鉴权认证。
使用Gallery CLI配置工具上传文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli upload”可以往AI Gallery仓库上传资产。 命令说明 登录Gallery
使用Gallery CLI配置工具下载文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli download”可以从AI Gallery仓库下载资源。 命令说明 登录Gallery
使用AI市场物体检测YOLOv3_Darknet53算法训练后部署在线服务报错 问题现象 使用AI市场物体检测YOLOv3_Darknet53算法进行训练,将数据集切分后进行部署在线服务报错,日志如下:TypeError: Cannot interpret feed_dict key
执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build --build-arg
内存不足如何处理? 问题现象 在部署或升级在线服务时,如果部署或升级失败,并且在事件中出现如下类似提示。 图1 内存不足提示样例1 运行中服务出现告警时,在事件中出现建议:内存不足,请增加内存。 图2 内存不足提示样例2 原因分析 部署或升级时出现该提示,可能原因是选择的计算节点
执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build --build-arg
执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 如果无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build --build-arg
执行以下命令制作训练镜像。安装过程需要连接互联网git clone,请确保ECS可以访问公网 docker build -t <镜像名称>:<版本名称> . 若无法访问公网,则可以配置代理,增加`--build-arg`参数指定代理地址,可访问公网。 docker build --build-arg