检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
数据集要求 预测分析项目中需要使用到的数据集为表格数据集,数据格式支持csv格式。表格数据集的具体介绍请参见表格数据集。 将原始.xlsx格式的数据转换为.csv格式的数据的方法如下: 将原始表格数据(.xlsx)另存。单击“文件>另存为”,选择本地地址后,下拉选择“保存类型”为“CSV
Face权重(可与tokenizer相同文件夹)时,对应的存放地址。请根据实际规划修改。 TOKENIZER_PATH /home/ma-user/ws/llm_train/AscendSpeed/tokenizers/llama2-13B 该参数为tokenizer文件的存放地址。默认与ORIGINAL_H
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b
NPU分布式训练 场景描述 ranktable路由规划是一种用于分布式并行训练中的通信优化能力,在使用NPU的场景下,支持对节点之间的通信路径根据交换机实际topo做网络路由亲和规划,进而提升节点之间的通信速度。 本案例介绍如何在ModelArts Lite场景下使用ranktable路由规划完成Pytorch
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 Step2 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
TMP_CACHE_PATH) zip_data_path = os.path.join(TMP_CACHE_PATH, '*.zip') unzip_data_path = os.path.join(TEMP_CACHE_PATH, 'unzip') #也可以采用zipfile等Python包来做解压
E表示作业的配置文件路径,如果不指定该参数,则表示配置文件为空。配置文件是一个YAML格式的文件,里面的参数就是命令的option参数。此外,如果用户在命令行中同时指定YAML_FILE配置文件和option参数,命令行中指定的option参数的值将会覆盖配置文件相同的值。 $ma-cli
在本地PC的hosts文件中配置域名和IP地址的对应关系。 三、网络代理设置 如果用户使用的网络有代理设置要求,请检查代理配置是否正确。也可以使用手机热点网络连接进行测试排查。 检查代理配置是否正确。 图2 PyCharm网络代理设置 四、AK/SK不正确 获取到的AK/SK信
“输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。 图2 环境变量 表1 需要填写的环境变量 环境变量
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤2 修改训练超参配置 以Llama2-70b和Llama2-13b的SFT微调为例,执行脚本为0_pl_sft_70b
ss使用humaneval数据集时,需要执行模型生成的代码。请仔细阅读human_eval/execution.py文件第48-57行的注释,内容参考如下。了解执行模型生成代码可能存在的风险,如果接受这些风险,请取消第58行的注释,执行下面步骤5进行评测。 # WARNING #
ion的block大小,推荐设置为128。 --host=${docker_ip}:服务部署的IP,${docker_ip}替换为宿主机实际的IP地址。 --port:服务部署的端口。 --gpu-memory-utilization:NPU使用的显存比例,复用原vLLM的入参名称,默认为0
Gallery的模型仓库地址,包含模型仓库的所有文件。 “/home/ma-user/.cache/gallery/model/ur12345--gpt2” ENV_AG_DATASET_DIR 数据集存放路径,AI Gallery的数据集仓库地址,包含数据集仓库的所有文件。 “/home/ma-user/
的完整代码示例,供用户学习参考。 训练流程简述 相比于DP,DDP能够启动多进程进行运算,从而大幅度提升计算资源的利用率。可以基于torch.distributed实现真正的分布式计算,具体的原理此处不再赘述。大致的流程如下: 初始化进程组。 创建分布式并行模型,每个进程都会有相同的模型和参数。
“输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。 表1 需要填写的环境变量 环境变量 示例值
“输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。 表1 需要填写的环境变量 环境变量 示例值
“输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。 表1 需要填写的环境变量 环境变量 示例值
训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 如果想详细了解脚本执行训练权重转换操作和数据集预处理操作说明请分别参见训练中的权重转换说明和训练的数据集预处理说明。 步骤2 修改训练超参配置 以Llama2-70b和Llama2-13b的LoRA微调为例,执行脚本为0_pl_lora_70b
“输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。 表1 需要填写的环境变量 环境变量 示例值
“输入”和“输出”中的获取方式全部选择为:环境变量。 “输出”中的预下载至本地目标选择:下载,此时输出路径中的数据则会下载至OBS中。 Step3 配置环境变量 单击“增加环境变量”,在增加的环境变量填写框中,按照表1表格中的配置进行填写。 表1 需要填写的环境变量 环境变量 示例值