检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发布其他类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 其他类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
发布预测类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 预测类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
发布视频类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 视频类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
发布气象类数据集 原始数据集和加工后的数据集不可以直接用于模型训练,需要独立创建一个“发布数据集”。 气象类数据集当前仅支持发布为“默认格式”,操作步骤如下: 登录ModelArts Studio大模型开发平台,进入所需操作空间。 图1 进入操作空间 在左侧导航栏中选择“数据工程
具体格式要求详见表1。 表1 预测类数据集格式要求 文件内容 文件格式 文件样例 时序 csv 数据为结构化数据,包含列和行,每一行表示一条数据,每一列表示一个特征,并且必须包含预测目标列,预测目标列要求为连续型数据。 目录下只有1个数据文件时,文件无命名要求。 目录下有多个数据
为什么微调后的盘古大模型的回答会异常中断 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果不完整,出现了异常截断。这种情况可能是由于以下几个原因导致的,建议您依次排查: 推理参数设置:请检查推理参数中的“最大Token限制”参数的设置,适当增加该参数的值,可
为什么微调后的盘古大模型的回答中会出现乱码 当您将微调的模型部署以后,输入一个与目标任务同属的问题,模型生成的结果中出现了其他语言、异常符号、乱码等字符。这种情况可能是由于以下几个原因导致的,建议您依次排查: 数据质量:请检查训练数据中是否存在包含异常字符的数据,可以通过规则进行清洗。
也可以直接选择已创建的变量集填入变量值信息,变量集是一个excel文件,每行数据是需要输入的变量值信息,可以通过“导入”功能进行上传。 图1 效果预览 单击“查看效果”,输出模型回复结果,用户可以基于预览的效果调整提示词文本和变量。 父主题: 撰写提示词
已选择数据集配比”中,用户可以设置从数据集中抽取指定数量的数据用于训练。进行数据配比的目的是为了确保模型能够更全面地学习和理解数据的多样性,提升模型的泛化能力和性能。 图4 发布方式2 图5 数据集配比 设置发布格式。由于数据工程需要支持对接盘古大模型或三方大模型,为了使这些数据
已选择数据集配比”中,用户可以设置从数据集中抽取指定数量的数据用于训练。进行数据配比的目的是为了确保模型能够更全面地学习和理解数据的多样性,提升模型的泛化能力和性能。 图4 发布方式2 图5 数据集配比 设置发布格式。由于数据工程需要支持对接盘古大模型或三方大模型,为了使这些数据
……]”的方式来构造,若您的数据是同一个角色连续多次对话的“多轮问题”,可以将同一个角色的对话采用某个分隔符拼接到一个字符串中。例如: 原始对话示例: A:xxx号话务员为您服务! A:先生您好,有什么可以帮助您的? B:你好,是这样的 B:我家里上不了网了 B:网连不上 A:先生,您家的网络无法连接是吗
由账号在IAM中创建的用户,是云服务的使用人员,具有身份凭证(密码和访问密钥)。 在我的凭证下,您可以查看账号ID和用户ID。通常在调用API的鉴权过程中,您需要用到账号、用户和密码等信息。 区域(Region) 从地理位置和网络时延维度划分,同一个Region内共享弹性计算、块存储、对象存储、V
作流的结束。每个工作流执行完成后,都需要一个结束组件用于输出工作流的执行结果。结束组件后,不支持添加其他组件。不支持新增或者删除结束组件。 结束组件可能会有多个输入,但是只能有一个输出值,因此需要开发者在“指定回复”中合并多个输入值为一个输出值。 单击画布中的“结束”组件,打开参数配置页面。
提示词工程介绍 提示工程是一项将知识、技巧和直觉结合的工作,需要通过不断实践实现模型输出效果的提升。提示词和模型之间存在着密切关系,本指南结合了大模型通用的提示工程技巧以及盘古大模型的调优实践经验,总结的一些技巧和方法更为适合基于盘古大模型的提示工程。 本文的方法论及技巧部分使用
"text": "故事标题:《穿越宋朝的奇妙之旅》在一个阴雨绵绵的夜晚,一个名叫李晓的年轻人正在阅读一本关于宋朝的历史书籍。突然,他感到一阵眩晕,当他再次睁开眼睛时,他发现自己身处一个完全陌生的地方。李晓发现自己穿越到了宋朝。他身处一座繁华的城市,人们穿着古
存储原始的图片,每张图片命名要求唯一(如abc.jpg)。 Caption:jsonl格式,图片描述jsonl文件放在最外层目录,一个tar包对应一个jsonl文件,文件内容中每一行代表一段文本,具体格式示例如下: {"image_name":"图片名称(abc.jpg)","tar_name":"tar包名称(1
训练损失值 训练损失值是一种衡量模型预测结果和真实结果之间的差距的指标,通常情况下越小越好。 一般来说,一个正常的Loss曲线应该是单调递减的,即随着训练的进行,Loss值不断减小,直到收敛到一个较小的值。 困惑度 用来衡量大语言模型预测一个语言样本的能力,数值越低,准确率也就越高,表明模型性能越好。
务流。 支持“零码”和“低码”开发者通过“拖拉拽”的方式快速搭建一个工作流,创建一个应用。 全链路信息调测评估:平台提供对Agent执行过程的全链路信息观测与调试调优,通过对信息的分层分析和展示,为开发者提供了AI应用在不同层级的运行情况指导和操作,提升观测和调试效率。 Agent开发平台应用场景
NLP大模型专门用于处理和理解人类语言。它能够执行多种任务,如对话问答、文案生成和阅读理解,同时具备逻辑推理、代码生成和插件调用等高级功能。 NLP大模型的训练分为两个关键阶段:预训练和微调。 预训练阶段:在这一阶段,模型通过学习大规模通用数据集来掌握语言的基本模式和语义。这一过程为模
基于对话问答功能,用户可以与模型进行自然而流畅的对话和交流。 - 通用文本(/text/completions) Java、Python、Go、.NET、NodeJs、PHP 给定一个提示和一些参数,模型会根据这些信息生成一个或多个预测的补全,还可以返回每个位置上不同词语的概率。