检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
发送短信通知费用构成:短信通知条数 发送电子邮件费用构成:电子邮件+外网下行流量 发送HTTP(S)费用构成:HTTP(S)+外网下行流量 ModelArts Standard自动学习、Workflow、Notebook、训练作业、在线/批量/边缘服务 ModelArts Studio(MAAS)
tor,其运行环境就是cpu.2u。 部署在线服务Predictor,即将存储在OBS中的模型文件部署到线上服务管理模块提供的容器中运行,其环境规格(如CPU规格,GPU规格)由表3 predictor configs结构决定。 部署在线服务Predictor需要线上服务端根据A
修改模型服务QPS 流量限制QPS是评估模型服务处理能力的关键指标,它指示系统在高并发场景下每秒能处理的请求量。这一指标直接关系到模型的响应速度和处理效率。不当的QPS配置可能导致用户等待时间延长,影响满意度。因此,能够灵活调整模型的QPS对于保障服务性能、优化用户体验、维持业务流畅及控制成本至关重要。
服务管理概述 服务管理,包括将已创建成功的模型部署为在线服务或本地服务。可以实现在线预测、本地预测、服务详情查询、查看服务日志等功能。 这里的在线服务包括“predictor”和“transformer”两类,都包括下文描述的功能,本章节以“predictor”服务为例进行说明。
被清空。SFS购买指导请参考如何购买弹性文件服务?。 购买容器镜像服务SWR 容器镜像服务分为企业版和共享版。 共享版计费项包括存储空间和流量费用,目前均免费提供给您。 企业版当前仅支持按需计费模式,公测期间,可免费使用。 上传镜像前需要创建组织,创建步骤请参考创建组织。 购买对象存储服务OBS
flow、开发环境、模型训练、在线服务、专属资源池涉及到需要停止的计费项如下: 自动学习:停止因运行自动学习作业而创建的训练作业和在线服务。删除存储到OBS中的数据及OBS桶。 Workflow:停止因运行Workflow作业而创建的训练作业和在线服务。删除存储到OBS中的数据及OBS桶。
场景描述 本案例介绍如何在Snt9B环境中利用Deployment机制部署在线推理服务。首先创建一个Pod以承载服务,随后登录至该Pod容器内部署在线服务,并最终通过新建一个终端作为客户端来访问并测试该在线服务的功能。 图1 任务示意图 操作步骤 拉取镜像。本测试镜像为bert_
出现此问题,一般是因为后台服务故障导致的,建议稍等片刻,然后重新部署在线服务。如果重试超过3次仍无法解决,请获取如下信息,并联系华为云技术支持协助解决故障。 获取服务ID。 进入“部署上线>在线服务”页面,在服务列表中找到自动学习任务中部署的在线服务,自动学习部署的服务都是以“exeML-”开头的
部署模型 部署服务 ModelArts支持将模型部署为在线服务、批量服务和边缘服务。 部署为在线服务 部署为批量服务 访问服务 服务部署完成后,针对在线服务和边缘服务,您可以访问并使用服务,针对批量服务,您可以查看其预测结果。 访问在线服务 查看批量服务预测结果
SDK,安装后可直接调用ModelArts SDK轻松管理数据集、创建ModelArts训练作业及创建AI应用,并将其部署为在线服务。 ModelArts SDK使用限制 本地ModelArts SDK不支持进行训练作业调测、模型调试和在开发环境中部署本地服务进行调试,当前仅支持在开发环境Notebook中调试。
自动学习训练后的模型是否可以下载? 不可以下载。但是您可以在AI应用管理页面查看,或者将此模型部署为在线服务。 父主题: Standard自动学习
果没有提供启动探针,则默认状态为成功Success。 就绪探针:用于检测应用实例是否已经准备好接收流量。如果就绪探针失败,即实例未准备好,会从服务负载均衡的池中剔除该实例,不会将流量路由到该实例,直到探测成功。 存活探针:用于检测应用实例内应用程序的健康状态。如果存活探针失败,即应用程序不健康,将会自动重启实例。
增加3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 “启动命令” 指定模型的启动命令,您可以自定义该命令。 说明: 包含字符$,|,>,<,`,
删除服务存在如下两种删除方式。 根据部署在线服务生成的服务对象删除服务。 根据查询服务对象列表返回的服务对象删除服务。 示例代码 在ModelArts notebook平台,Session鉴权无需输入鉴权参数。其它平台的Session鉴权请参见Session鉴权。 方式1:根据部署在线服务生成的服务对象删除服务
专属资源池需单独创建,不与其他租户共享。 公共资源池 实例规格 选择实例规格,规格中描述了服务器类型、型号等信息。 xxx 流量限制(QPS) 设置待部署模型的流量限制QPS。 1 实例数 设置服务器个数。 1 更多选项 内容审核 选择是否打开内容审核,默认启用。 开关打开(默认打开
配置信息。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 “启动命令” 选填参数,指定模型的启动命令,您可以自定义该命令。 如果使用预
使用SDK调测单机训练作业 代码中涉及到的OBS路径,请用户替换为自己的实际OBS路径。 代码是以PyTorch为例编写的,不同的AI框架之间,整体流程是完全相同的,仅需修改6和10中的framework_type参数值即可,例如:MindSpore框架,此处framework_
Integer real-time类型必选。权重百分比,分配到此模型的流量权重,仅当infer_type为real-time时需要配置,多个权重相加必须等于100;当在一个在线服务中同时配置了多个模型版本且设置不同的流量权重比例时,持续地访问此服务的预测接口,ModelArts会按此权
API接口创建训练作业和部署服务时,如何填写资源池的参数? 调用API接口创建训练作业时,“pool_id”为“资源池ID”。 调用API接口部署在线服务时,“pool_name”为“资源池ID” 。 图1 资源池ID 父主题: API/SDK
6-gpu"。修改完成后,重新执行导入模型和部署为在线服务的操作。 参数设置完成后,单击“下一步”,确认规格参数,单击“提交”,完成在线服务的部署。 您可以进入“模型部署 > 在线服务”页面,等待服务部署完成,当服务状态变为“运行中”时,表示服务部署成功。预计时长2分钟左右。 在线服务部署完成后,您可以单