工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对LLaMAFactory开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
工具介绍及准备工作 本章节主要介绍针对ModelLink开发的测试工具benchmark,支持训练、性能对比、下游任务评测、loss和下游任务对比能力。对比结果以excel文件呈现。方便用户验证发布模型的质量。所有配置都通过yaml文件设置,用户查看默认yaml文件即可知道最优性能的配置。
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.910)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.912)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.5.901)
训练benchmark工具 工具介绍及准备工作 训练性能测试 训练精度测试 父主题: 主流开源大模型基于Lite Server适配LlamaFactory PyTorch NPU训练指导(6.3.911)
在节点页签,单击选择“配置工具”,弹出该节点的配置工具页面。 在配置工具页面,单击“下载”启动下载任务。当配置工具的状态记录中“工具状态”为“下载完成”时表示下载完成,工具包存放在“下载位置”的目录下。 如果下载失败,单击“下载”可以重新下载。 登录云服务器查看工具包是否下载成功。 在
msprobe工具使用指导 msprobe API预检 msprobe精度比对 msprobe梯度监控 父主题: GPU业务迁移至昇腾训练推理
当前固定随机性操作可分为工具固定和人工固定两种。 工具固定Seed 对于网络中随机性的固定,msprobe提供了固定Seed的方式,只需要在config.json文件中添加对应seed配置即可。 msprobe工具提供了seed_all接口用于固定网络中的随机数。如果客户使用了工具但取用了其他
使用llm-compressor工具量化 当前版本使用llm-compressor工具量化仅支持Deepseek-v2系列模型的W8A8量化。 本章节介绍如何在GPU的机器上使用开源量化工具llm-compressor量化模型权重,然后在NPU的机器上实现推理量化。 具体操作如下:
使用kubectl工具。 如果通过内网使用kubectl工具,需要将kubectl工具安装在和集群在相同vpc下的某一台机器上。单击kubectl后的“配置”按钮。按照界面提示步骤操作即可。 图3 通过内网使用kubectl工具 通过公网使用kubectl工具,可以将kubectl安装在任一台可以访问公网的机器。
使用Msprobe工具分析偏差 观察上一章Loss趋势,在首个Step有较小偏差,所以对第一个Step进行比对分析。此处使用Msprobe的整网Dump和比对分析功能。 首先安装社区Msprobe工具,命令如下: pip install mindstudio-probe 使能工具进行数据Dump分析。本实验可在train
使用Gallery CLI配置工具上传文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli upload”可以往AI Gallery仓库上传资产。 命令说明 登录Gallery
使用Gallery CLI配置工具下载文件 在服务器(ModelArts Lite云服务器或者是本地Windows/Linux等服务器)上登录Gallery CLI配置工具后,通过命令“gallery-cli download”可以从AI Gallery仓库下载资源。 命令说明 登录Gallery
密钥对在用户第一次创建时,自动下载,之后使用相同的密钥时不会再有下载界面(用户一定要保存好),或者每次都使用新的密钥对。 Step1 安装SSH工具 下载并安装SSH远程连接工具,以PuTTY为例,下载链接。 Step2 使用puttygen将密钥对.pem文件转成.ppk文件 下载puttygen,并双击运行puttygen。
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
本章节介绍如何在Notebook使用SmoothQuant量化工具实现推理量化。 SmoothQuant量化工具使用到的脚本存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools目录下。 代码目录如下: AutoSmoothQuant #量化工具 ├── asc
您即将访问非华为云网站,请注意账号财产安全