检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
Standard开发环境 软件开发的历史,就是一部降低开发者成本,提升开发体验的历史。在AI开发阶段,ModelArts也致力于提升AI开发体验,降低开发门槛。ModelArts Standard开发环境,以云原生的资源使用和开发工具链的集成,目标为不同类型AI开发、探索、教学用户
使用PyCharm手动连接Notebook 本地IDE环境支持PyCharm和VS Code。通过简单配置,即可用本地IDE远程连接到ModelArts的Notebook开发环境中,调试和运行代码。 本章节介绍基于PyCharm环境访问Notebook的方式。 前提条件 本地已安装
MindSpore Lite提供了Python、C++以及JAVA三种应用开发接口。此处以Python接口为例,介绍如何使用MindSpore Lite Python API构建并推理Stable Diffusion模型,更多信息请参考MindSpore Lite应用开发。
workflow_name" : "workflow-service-infer", "steps_execution" : [ { "created_at" : "2022-08-25T17:01:52.500034+08:00", "uuid" : "54979c30
{ "task_type" : "pre-label", "model_id" : "c4989033-7584-44ee-a180-1c476b810e46", "collect_key_sample" : true, "config" : { "inf_config_list
请求示例 停止uuid为3faf5c03-aaa1-4cbe-879d-24b05d997347的训练作业。
使用MaaS压缩模型 在ModelArts Studio大模型即服务平台完成模型创建后,可以对模型进行压缩,获得更合适的模型。 场景描述 模型压缩是指将高比特浮点数映射到低比特量化空间,从而减少显存占用的资源,降低推理服务时延,提高推理服务吞吐量,并同时减少模型的精度损失。模型压缩适用于追求更高的推理服务性能
资源池批量设置多个高可用冗余节点 方式一:在购买时设置(仅Snt9C支持) 图1 购买时设置 参数说明: 开启高可用冗余:是否开启资源池的高可用冗余,超节点默认开启高可用冗余。 冗余节点分布策略:冗余节点的分布策略,超节点仅支持step均分:每个超节点内预留相同数量的冗余节点。
管理训练容器环境变量 什么是环境变量 本章节展示了训练容器环境中预置的环境变量,方便用户查看,主要包括以下类型。 路径相关环境变量 分布式训练作业环境变量 NCCL(Nvidia Collective multi-GPU Communication Library)环境变量 OBS
查看Standard专属资源池详情 资源池详情页介绍 登录ModelArts管理控制台,在左侧导航栏中选择“AI专属资源池 > 弹性集群Cluster”,进入“Standard资源池”列表。 在“Standard资源池”列表页的搜索框中,支持根据资源池的名称、资源池ID、资源池的状态
", "workspace_id" : "0", "ai_project" : "default-ai-project", "items" : [ { "kind" : "job", "metadata" : { "id" : "3faf5c03
{ "model_id" : "7feb7235-ed9c-48ae-9833-2876b2458445" } 状态码 状态码 描述 200 模型创建成功。 错误码 请参见错误码。 父主题: AI应用管理
JupyterLab常用功能介绍 JupyterLab视频介绍 JupyterLab主页介绍 下面介绍如何从运行中的Notebook实例打开JupyterLab。 登录ModelArts管理控制台,在左侧菜单栏中选择“开发空间 > Notebook”,进入Notebook页面。 选择状态为
查询单个智能标注样本的信息 GET https://{endpoint}/v2/{project_id}/datasets/{dataset_id}/auto-annotations/samples/{sample_id} 响应示例 状态码: 200 OK { "sample_id" : "0059c1b9458a2da9443af684b5099b4e
Standard支持的AI框架 ModelArts Standard的开发环境Notebook、训练作业、模型推理(即模型管理和部署上线)支持的AI框架及其版本,请参见如下描述。 统一镜像列表 ModelArts提供了ARM+Ascend规格的统一镜像,包括MindSpore、PyTorch
modelarts.session import Session from modelarts.estimatorV2 import Estimator session = Session() estimator = Estimator(session=session, job_id="618222c4
CogVideoX1.5 5b模型基于DevServer适配PyTorch NPU全量训练指导(6.3.912) 本文档主要介绍如何在ModelArts的DevServer环境中,使用NPU卡对CogVideoX模型进行全量微调。本文档中提供的脚本,是基于原生CogVideoX的代码基础适配修改
从0制作自定义镜像用于创建训练作业(MindSpore+Ascend) 本案例介绍如何从0到1制作Ascend容器镜像,并使用该镜像在ModelArts平台上进行训练。镜像中使用的AI引擎是MindSpore,训练使用的资源是专属资源池的Ascend芯片。 场景描述 目标:构建安装如下软件的容器镜像
{ "success" : true, "results" : [ { "success" : true, "name" : "/test-obs/classify/input/animals/2.jpg", "info" : "960585877c92d63911ba555ab3129d36
部署模型为在线服务 模型准备完成后,您可以将模型部署为在线服务,对在线服务进行预测和调用。 约束与限制 单个用户最多可创建20个在线服务。 前提条件 数据已完成准备:已在ModelArts中创建状态“正常”可用的模型。 由于在线运行需消耗资源,确保账户未欠费。 部署服务操作需要镜像