检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
# modelLink兼容旧版本启动方式目录 |──Dockerfile 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
size参数,指定-1时为per-channel权重量化,W4A16支持128和-1,W8A16支持-1。 --w-bit:量化比特数,W4A16设置4,W8A16设置8。 --calib-data:数据集路径,推荐使用:https://huggingface.co/datasets/mit-ha
复制模型文件失败 原因分析 由于ModelArts的使用权限依赖OBS服务的授权,需要为用户授予OBS的系统权限。子用户的IAM权限是由其主用户设置的,如果主用户没有赋予OBS的putObjectAcl权限即会导致创建模型构建失败。 处理方法 了解ModelArts依赖的OBS权限自定
邮箱地址添加新成员。 “角色”支持“Labeler”、“Reviewer”和“Team Manager”,“Team Manager”只能设置为一个人。 删除团队 当已有的团队不再使用,您可以执行删除操作。 在“标注团队”管理页面中,选中需删除的团队,然后单击“删除”。在弹出的对
Standard上报的所有监控指标都保存在AOM中,当ModelArts控制台可以查看的指标不满足诉求时,用户可以通过AOM服务提供的指标消费和使用的能力来查看指标。设置指标阈值告警、告警上报等,都可以直接在AOM控制台操作。具体参见通过AOM控制台查看ModelArts所有监控指标。 方式三:通过Grafana查看所有监控指标
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更改
/home/ma-user/miniconda3 # 设置容器镜像预置环境变量 # 请务必设置 PYTHONUNBUFFERED=1, 以免日志丢失 ENV PATH=$PATH:/home/ma-user/miniconda3/bin \ PYTHONUNBUFFERED=1 # 设置容器镜像默认用户与工作目录
/home/ma-user/miniconda3 # 设置容器镜像预置环境变量 # 请务必设置 PYTHONUNBUFFERED=1, 以免日志丢失 ENV PATH=$PATH:/home/ma-user/miniconda3/bin \ PYTHONUNBUFFERED=1 # 设置容器镜像默认用户与工作目录
yaml相对或绝对路径,根据自己要求执行 <model_name>:训练模型名,如qwen2-7b <exp_name>:实验名称:具体可以设置的值参考<cfgs_yaml_file> --master_addr <master_addr>:主master节点IP,一般选rank0为主master。
# modelLink兼容旧版本启动方式目录 |──Dockerfile 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在 scripts 文件夹中。 ${workdir} |──llm_train
|---annotations |---train2017 |---val2017 更多obsutil的操作,可参考obsutil简介。 将文件设置归属为ma-user: chown -R ma-user:ma-group coco 代码云上适配 下载YOLOX代码。代码仓地址:https://github
# modelLink兼容旧版本启动方式目录 |──Dockerfile 工作目录介绍 详细的工作目录参考如下,建议参考以下要求设置工作目录。训练脚本以分类的方式集中在scripts文件夹中。 ${workdir}(例如/home/ma-user/ws ) |──llm_train
yaml相对或绝对路径,根据自己要求执行 <model_name>:训练模型名,如qwen2-7b <exp_name>:实验名称:具体可以设置的值参考<cfgs_yaml_file> --master_addr <master_addr>:主master节点IP,一般选rank0为主master。
或float时可选填,默认为空。 param_desc 否 String 参数描述,建议长度设置不超过100个字符,默认为空。 param_name 是 String 参数名,建议长度设置不超过64个字符。 url 是 String api代表的url路径。 param_type
径。“输出路径”不能与“保存路径”为同一路径,且“输出路径”不能是“保存路径”的子目录。 图1 导出新数据集 数据导出成功后,您可以前往您设置的保存路径,查看到存储的数据。当导出方式选择为新数据集时,在导出成功后,您可以前往“数据集”列表中,查看到新的数据集。 在“数据集概览页”
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更
py”文件进行模型量化,量化时间和模型大小有关,预计30分钟~3小时。 export ASCEND_RT_VISIBLE_DEVICES=0 #设置使用NPU单卡执行模型量化 python examples/quantize.py --model-path /home/ma-user/llama-2-7b/
在“全部”、“未标注”或“已标注”页签下,您可以在筛选条件区域,添加筛选条件,快速过滤出您想要查看的数据。 支持的筛选条件如下所示,您可以设置一个或多个选项进行筛选。 难例集:难例或非难例。 标签:您可以选择全部标签,或者基于您指定的标签,选中其中一个或多个。 样本创建时间:1个
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更
ata.json,数据大小:43.6 MB。 自定义数据 用户也可以自行准备训练数据。数据要求如下: 使用标准的.json格式的数据,通过设置--json-key来指定需要参与训练的列。 请注意huggingface中的数据集具有如下this格式。可以使用–json-key标志更