检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install
5-72B-Chat-AWQ 参数说明: model:模型路径。 Step3 启动AWQ量化服务 参考Step3 启动推理服务,在启动服务时添加如下命令。 --q awq 或者--quantization awq 父主题: 推理模型量化
8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
tion/benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip}
tion/benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip}
tion/benchmark_tools/modal_benchmark/modal_benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python modal_benchmark_parallel.py \ --host ${docker_ip}
8的scale系数的抽取和加载。 Step3 启动kv-cache-int8量化服务 参考Step3 启动推理服务,启动推理服务时添加如下命令。 --kv-cache-dtype int8 #只支持int8,表示kvint8量化 --quantization-param-path
此外, transformers执行需要高版本的scikit-learn、acclerate,详情请参见常见问题5、常见问题6。此处执行升级命令: # shell pip install scikit-learn accelerate --upgrade transformers库的training_args
语言模型脚本相对路径是tools/llm_evaluation/benchmark_tools/benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host
process_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home/ma-user/ws/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户直接编辑scripts/llama2/1_preprocess_data
process_data.sh脚本,将执行的python命令复制下来,修改环境变量的值,进入到 /home/ma-user/ws/llm_train/AscendSpeed/ModelLink 路径中,再执行python命令。 方法二:用户直接编辑scripts/llama2/1_preprocess_data
requirements.txt 静态benchmark 运行静态benchmark验证脚本benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 Notebook中进行测试: conda activate python-3.9.10 cd benchmark_tools
install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools
install.sh # 环境部署脚本 |——src/ # 启动命令行封装脚本,在install.sh里面自动构建 |──llm_inference # 推理代码包 |──llm_tools
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install
创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 训练作业启动命令中输入: cd /home/ma-user/work/llm_train/AscendSpeed; sh ./scripts/install
requirements.txt 静态benchmark 运行静态benchmark验证脚本benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 Notebook中进行测试: conda activate python-3.9.10 cd benchmark_tools
语言模型脚本相对路径是tools/llm_evaluation/benchmark_tools/benchmark_parallel.py,具体操作命令如下,可以根据参数说明修改参数。 python benchmark_parallel.py --backend openai --host
ponse页签中查看response的信息。 如果是方式2可以根据不同的工具查看response header及body信息,比如CURL命令可以通过-I选项查看response header。 如果查看到的response header中Server字段为ModelArts且response