检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
允许发起新的验收任务,只能继续完成当前验收任务。 3:通过。团队标注任务已完成。 4:驳回。manager再次启动任务,重新修改标注和审核工作。 5:验收结果同步中。验收任务改为异步,新增验收结果同步中的状态,此时不允许发起新的验收任务,也不允许继续当前验收,任务名称的地方提示用户同步中。
在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换代码。替换文件{work_d
Schema通过定义对象属性、类型、格式的方式来引导模型生成一个包含用户信息的JSON对象。 其优势主要如下: 上下文引导:通过提供特定的提示或上下文信息,模型可以更好地理解生成内容的方向。 约束生成:可以设定某些限制条件,如关键词、主题或风格,使生成的内容更加一致和相关。 提高质量:通过引导,生成的文本通常更具逻辑性和连贯性,减少无关信息的出现。
用户自身用户组的授权策略的授权范围,如果配置不当就会出现用户越权的问题。 为了控制委托授权的越权风险,ModelArts服务的权限管理功能要求只有租户管理员才能为用户配置委托,由管理员保证委托授权的安全性。 委托授权的最小化 管理员在配置委托授权时,应严格控制授权的范围。 Mod
0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本
语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,
语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,
语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,
在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换代码。替换文件{work_d
在训练开始前,因模型权重文件可能与训练框架不匹配或有优化,因此需要针对模型的tokenizer文件进行修改或替换,不同模型的tokenizer文件修改内容如下。 falcon-11B模型 在训练开始前,针对falcon-11B模型中的tokenizer文件,需要替换代码。替换文件{work_d
支持从OBS中导入新的数据,导入方式包括目录导入和Manifest文件导入。 dataset.import_data(path=None, anntation_config=None, **kwargs) 不同类型的数据集支持的导入方式如表1所示。 表1 不同数据集支持的导入方式 数据集类型
执行代码包中例如:scripts/llama2/0_pl_pretrain_13b.sh 的脚本,开始训练。 在训练中,程序会自动执行对数据集预处理、权重转换、执行训练等操作,具体可通过训练启动脚本说明和参数配置、训练的数据集预处理说明、训练的权重转换说明了解其中的操作。 训练完成后在SFS
语言模型的推理精度测试,数据集包含mmlu、ARC_Challenge、GSM_8k、Hellaswag、Winogrande、TruthfulQA等。 约束限制 确保容器可以访问公网。 当前的精度测试仅适用于语言模型精度验证,不适用于多模态模型的精度验证。多模态模型的精度验证,
0框架推理失败: 错误截图: 报错原因: 训练时transformers版本要求为4.45.0,训练完成后保存的tokenizer.json文件中的“merges”时保存的是拆开的列表不是字符串,导致推理异常 解决措施,以下两种方法任选其一: 更新transformes和tokenizers版本
pip软件包版本不匹配,需要修改为日志中打印的存在的版本。 图3 pip版本不匹配 构建日志中出现报错:“exec /usr/bin/sh: exec format error”。 这种报错一般是因为所用镜像系统引擎和构建镜像的系统引擎不一致引起的,例如使用的是x86的镜像却标记的是arm的系统架构。
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr
供轻量级的虚拟化,以便隔离进程和资源。尽管容器技术已经出现很久,却是随着Docker的出现而变得广为人知。Docker是第一个使容器能在不同机器之间移植的系统。它不仅简化了打包应用的流程,也简化了打包应用的库和依赖,甚至整个操作系统的文件系统能被打包成一个简单的可移植的包,这个包
max_model_len。 解决方法:修改config.json文件中的"seq_length"的值,"seq_length"需要大于等于 --max-model-len的值。 config.json存在模型对应的路径下,例如:/data/nfs/benchmark/tokeniz
镜像方案说明 准备大模型训练适用的容器镜像,包括获取镜像地址,了解镜像中包含的各类固件版本,配置Standard物理机环境操作。 基础镜像地址 本教程中用到的训练的基础镜像地址和配套版本关系如下表所示,请提前了解。 表1 基础容器镜像地址 镜像用途 镜像地址 配套版本 基础镜像 swr