检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
gemodels”。 请在SDK中心获取最新的sdk包版本,替换示例中版本。 表1 安装推理SDK SDK语言 安装方法 Java 在您的操作系统中下载并安装Maven,安装完成后您只需要在Java项目的pom.xml文件中加入相应的依赖项即可。 <dependency>
如果您需要为企业员工设置不同的访问权限,以实现功能使用权限和资产的权限隔离,可以为不同员工配置相应的角色,以确保资产的安全和管理的高效性。 如果华为云账号已经能满足您的要求,不需要创建独立的IAM用户(子用户)进行权限管理,您可以跳过本章节,不影响您使用盘古的其他功能。 您可以使用统
人满意的精度。此外,模型具备自我学习和不断进化的能力,随着新数据的持续输入,其性能和适应性不断提升,确保在多变的语言环境中始终保持领先地位。 应用场景灵活 盘古大模型具备强大的学习能力,能够通过少量行业数据快速适应特定业务场景的需求。模型在微调后能够迅速掌握并理解特定行业的专业知
json解析报错 服务端返回的数据格式不符合json格式,导致sdk侧解析json数据报错。 服务端返回的json数据不符合json反序列化的规则,和sdk定义的数据结构不一致,导致反序列化失败。 sdk json数据解析问题。 建议排查服务端返回的数据是否和服务SDK设计的结构、字段一致。
除文本、图片、视频、气象、预测类数据集外,平台还支持导入其他类数据集,即用户训练模型时使用的自定义数据集。 其他类数据集支持发布其他类数据集操作,不支持数据加工操作。 其他类数据集要求单个文件大小不超过50GB,单个压缩包大小不超过50GB,文件数量最多1000个。 父主题: 数据集格式要求
强模型的泛化能力。取值范围:[0,1]。 给输入数据加噪音的尺度 给输入数据加噪音的尺度,定义了给输入数据加噪音的尺度。这个值越大,添加的噪音越强烈,模型的正则化效果越强,但同时也可能会降低模型的拟合能力。取值范围:[0,1]。 给输出数据加噪音的概率 给输出数据加噪音的概率,定
在“应用配置”中,选择已部署好的大模型,单击“确定”。 在“应用接入”列表的“APP Code”操作列中可获取APPCode值。 如图3,为Token认证方式的请求Header参数填写示例。 图3 配置请求参数 在Postman中选择“Body > raw”选项,参考以下代码填写请求Body。API参数说明详见《API参考》文档。
limit:XX,time:1 minute. 发送请求超过了服务的默认配置限流。 通过重试机制,在代码里检查返回值,碰到并发错误可以延时一小段时间(如2-5s)重试请求。 后端检查上一个请求结果,上一个请求返回之后再发送下一个请求,避免请求过于频繁。 父主题: 附录
撰写提示词 提示词是用来引导模型生成的一段文本。撰写的提示词应该包含任务或领域的关键信息,如主题、风格、格式等。 撰写提示词时,可以设置提示词变量。即在提示词中通过添加占位符{{ }}标识表示一些动态的信息,让模型根据不同的情况生成不同的文本,增加模型的灵活性和适应性。例如,将提示词设
Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 获取调用路径。 在左侧导航栏中选择“模型开发 > 模型部署”。 获取已部署模型的调用路径。在“我的服务”页签,单击状态为“运行中”的模型名称,在“详情”页签,可获取模型调用路径,如图1。 图1 获取已部署模型的调用路径 获取预置服务的调用路
String 模型的部署ID,获取方法请参见获取模型部署ID。 请求参数 表2 请求Header参数 参数 是否必选 参数类型 描述 X-Auth-Token 是 String 用户Token。 用于获取操作API的权限。获取Token接口响应消息头中X-Subject-Token的值即为Token。
服务中的数据安全可靠。 表1 盘古大模型的数据保护手段和特性 数据保护手段 简要说明 传输加密(HTTPS) 盘古服务使用HTTPS传输协议保证数据传输的安全性。 基于OBS提供的数据保护 基于OBS服务对用户的数据进行存储和保护。请参考OBS数据保护技术说明:https://support
获取调用路径 工作流的调用路径获取步骤如下: 登录ModelArts Studio大模型开发平台,在“我的空间”模块,单击进入所需空间。 在左侧导航栏中选择“Agent开发”,跳转至Agent开发平台。 在“工作台 > 工作流”页面,单击所需工作流的“ > 调用路径”。 图1
可以尝试修改参数并查看模型效果。以修改“核采样”参数为例,核采样控制生成文本的多样性和质量: 当“核采样”参数设置为1时,保持其他参数不变,单击“重新生成”,再单击“重新生成”,观察模型前后两次回复内容的多样性。 图2 “核采样”参数为1的生成结果1 图3 “核采样”参数为1的生成结果2 将“核采样”参数调小至0.1
”区域,需要获取与贵阳一区域的对应的项目id。 图2 获取项目ID 多项目时,展开“所属区域”,从“项目ID”列获取子项目ID。 调用API获取项目ID 项目ID还可通过调用查询指定条件下的项目信息API获取。 获取项目ID的接口为“GET https://{Endpoint}/
各节点的功能和设计思路: 开始节点:作为工作流的入口,开始节点负责接收用户输入的文本。无论是普通对话文本,还是包含翻译请求的文本,都将从此节点开始。 意图识别节点:该节点对用户输入的文本进行分类和分析,识别出用户的意图。主要包括以下两种意图: 文本翻译意图:系统识别出用户希望进行文本翻译的请求。
解大语言模型能力方面都起着重要作用。用户可以通过提示词工程来提高大语言模型的安全性,还可以赋能大语言模型,如借助专业领域知识和外部工具来增强大语言模型的能力。 提示词基本要素 您可以通过简单的提示词(Prompt)获得大量结果,但结果的质量与您提供的信息数量和完善度有关。一个提示
使用数据工程构建NLP大模型数据集”。 模型开发-模型最小训练单元 不同模型的最小训练单元有所不同,具体信息请参见模型能力与规格。 模型开发-NLP大模型请求的最大Token数 不同系列的NLP大模型支持请求的最大Token数有所不同,具体信息请参见模型能力与规格。
模型训练的标准,是数据工程中的核心环节。 数据清洗 通过专用的清洗算子对数据进行预处理,确保数据符合模型训练的标准和业务需求。不同类型的数据集使用专门设计的算子,例如去除噪声、冗余信息等,提升数据质量。 数据合成 利用预置或自定义的数据指令对原始数据进行处理,并根据设定的轮数生成
意图识别节点响应意图的准确性。本实践的意图识别节点包含文本翻译意图和其他意图。 文本翻译意图:当用户请求翻译时,意图识别节点的关键任务是准确判断用户翻译的需求,执行翻译节点分支,并给出正确的翻译结果。 如图1,当用户输入翻译类问题时,“意图识别”节点对用户的意图分类为“文本翻译”