检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
创建ModelArts人工标注作业 由于模型训练过程需要大量有标签的数据,因此在模型训练之前需对没有标签的数据添加标签。您可以通过创建单人标注作业或团队标注作业对数据进行手工标注,或对任务启动智能标注添加标签,快速完成对图片的标注操作,也可以对已标注图片修改或删除标签进行重新标注。
团队标注使用说明 数据标注任务中,一般由一个人完成,但是针对数据集较大时,需要多人协助完成。ModelArts提供了团队标注功能,可以由多人组成一个标注团队,针对同一个数据集进行标注管理。 团队标注功能仅在以下Region支持:华北-北京四、华北-北京一、华东-上海一、华南-广州
Controlnet训练 使用文本提示词可以生成一副精美的画作,然而无论再怎么精细地使用提示词来指导模型,也无法描述清楚人物四肢的角度、背景中物体的位置、光线照射的角度,使用Controlnet可以通过图像特征来为扩散模型的生成过程提供更加精细控制的方式。 将Controlnet
断点续训和故障快恢说明 相同点 断点续训(Checkpointing)和故障快恢都是指训练中断后可从训练中一定间隔(${save-interval})保存的模型(包括模型参数、优化器状态、训练迭代次数等)继续训练恢复,而不需要从头开始。 不同点 断点续训:可指定加载训练过程中生成
在ModelArts数据集中添加图片对图片大小有限制吗? 在数据管理功能中,针对“物体检测”或“图像分类”的数据集,在数据集中上传更多的图片时,是有限制的。要求单张图片大小不超过8MB,且只支持JPG、JPEG、PNG和BMP四种格式的图片。 请注意,针对自动学习功能中的添加图片
对应python包使用错误,该python包确实没有对应的变量或者方法 第三方pip源中的python包版本更新,导致在训练作业中安装的python包的版本可能也会发生变化。如训练作业之前无此问题,后面一直有此问题,则考虑是此原因。 处理方法 通过Notebook调试。 安装时指定版本。如:pip
获取对应模型的权重文件,获取链接参考表1。 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging
获取对应模型的权重文件,获取链接参考表1。 权重文件下载有如下几种方式,但不仅限于以下方式: 方法一:网页下载:通过单击表格中权重文件获取地址的访问链接,即可在模型主页的Files and Version中下载文件。 方法二:huggingface-cli:huggingface-cli是 Hugging
是否必选 参数类型 描述 dataset_id 是 String 数据集ID。 project_id 是 String 用户项目ID。获取方法请参见获取项目ID和名称。 workforce_task_id 是 String 标注任务ID。 请求参数 表2 请求Body参数 参数 是否必选
import SingleNodeService 可以重写的方法有以下几种。 表2 重写方法 方法名 说明 __init__(self, model_name, model_path) 初始化方法,适用于深度学习框架模型。该方法内加载模型及标签等(pytorch和caffe类型模型必须重写,实现模型加载逻辑)。
${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即第四步中生成的新镜像id,在宿主机上可通过docker images查询得到。 步骤六 启动推理服务 进入容器。 docker exec -it
查看ModelArts相关审计日志 在您开启了云审计服务后,系统会记录ModelArts的相关操作,且控制台保存最近7天的操作记录。本节介绍如何在云审计服务管理控制台查看最近7天的操作记录。 操作步骤 登录云审计服务管理控制台。 在管理控制台左上角单击图标,选择区域。 在左侧导航
${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即第四步中生成的新镜像id,在宿主机上可通过docker images查询得到。 步骤六 启动推理服务 进入容器。 docker exec -it
${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即第四步中生成的新镜像id,在宿主机上可通过docker images查询得到。 步骤六 启动推理服务 进入容器。 docker exec -it
附录:大模型推理常见问题 问题1:在推理预测过程中遇到NPU out of memory 解决方法:调整推理服务启动时的显存利用率,将--gpu-memory-utilization的值调小。 问题2:在推理预测过程中遇到ValueError:User-specified max_model_len
附录:指令微调训练常见问题 问题1:在训练过程中遇到NPU out of memory 解决方法: 将yaml文件中的per_device_train_batch_size调小,重新训练如未解决则执行下一步。 替换深度学习训练加速的工具或增加zero等级,可参考各个模型深度学习训
PO偏好训练、RM奖励模型训练、PPO强化训练方案。 DPO(Direct Preference Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx
多模态模型推理性能测试 benchmark方法介绍 静态性能测试:评估在固定输入、固定输出和固定并发下,模型的吞吐与首token延迟。该方式实现简单,能比较清楚的看出模型的性能和输入输出长度、以及并发的关系。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx