检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
json文件,请直接看步骤三。 步骤一:打开launch.json文件 方法一:单击左侧菜单栏的Run(Ctrl+Shift+D)按钮,再单击create a launch.json file。如下图所示: 方法二:单击上侧菜单栏中的Run > Open configurations按钮
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参
max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 父主题: 常见错误原因和解决方法
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参
哪里可以了解Atlas800训练服务器硬件相关内容 场景描述 本文提供Atlas800训练服务器硬件相关指南,包括三维视图、备件信息、HCCL常用方法以及网卡配置信息。 Atlas 800训练服务器三维视图 Atlas 800 训练服务器(型号9000)是基于华为鲲鹏920+Snt9处理
${container_name}:容器名称,进入容器时会用到,此处可以自己定义一个容器名称。 {image_id} 为docker镜像的ID,即第四步中生成的新镜像id,在宿主机上可通过docker images查询得到。 Step6 启动推理服务 进入容器。 docker exec -it
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
附录:工作负载Pod异常问题和解决方法 Pod状态为Pending 当Pod状态长时间为“Pending”,事件中出现“实例调度失败”的信息时,可根据具体事件信息确定具体问题原因。 图1 pod状态pending 通过以下命令打印Pod日志信息。 kubectl describe
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参
原因。具体参考链接为工作负载状态异常定位方法。 通过以下命令打印Pod日志信息。 kubectl describe pod ${pod_name} volcano资源调度失败 当volcano的资源出现争抢时,会出现下图中的问题。 解决方法: 通过打印所有Pod的信息,并找到命名有scheduler字段的Pod。
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法: 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
package - torch.distributed — PyTorch 2.3 documentation 父主题: 常见错误原因和解决方法
allocated memory try setting max_split_size_mb to avoid fragmentation. 解决方法 通过npu-smi info查看是否有进程资源占用NPU,导致训练时显存不足。解决可通过kill掉残留的进程或等待资源释放。 可调整参数