检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
ent-id(commit-id替换时去掉尖括号),使用浏览器下载vscode-server-linux-x64.tar.gz文件。 https://update.code.visualstudio.com/commit:<提交的ID码>/server-linux-x64/stable
数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。 常见问题 使用从OBS选择的数据创建表格数据集如何处理Schema信息? Schema信息表示表格的列名和对应类型,需要跟导入数据的列数保持一致。 如果您的原始表格中已包含表头,需要开启“
其他加速框架或ZeRO (Zero Redundancy Optimizer)优化器、NPU节点数即其他配置。 具体优化工具使用说明可参考如何选择最佳性能的zero-stage和-offloads。 父主题: 训练脚本说明
包括predictor configs结构和transformer configs 服务配置,不设置此参数时,表示不更新。关于configs如何生成,请参见部署在线服务。 更新服务配置时,存在以下约束: 参数status指定的目标状态不允许和当前服务状态相同。 当前服务状态是dep
由于欧拉源上没有git-lfs包,所以需要从压缩包中解压使用,在浏览器中输入如下地址下载git-lfs压缩包并上传到服务器的/home目录。 https://github.com/git-lfs/git-lfs/releases/download/v3.2.0/git-lfs-linux-arm64-v3
ModelArts-Console访问地址 华北-北京四 https://console.huaweicloud.com/modelarts/?region=cn-north-4#/dataLabel?tabActive=labelConsole 华北-北京一 https://console.huaweicloud
FullAccess/VPC FullAccess/VPC Administrator/VPCEndpoint Administrator)。 登录统一身份认证服务管理控制台。 单击目录左侧“用户组”,然后在页面右上角单击“创建用户组”。 填写“用户组名称”并单击“确定”。 在操作列单击“用户组管
目录下执行上述ma-pre-start脚本,使用该机制可以更新容器镜像内安装的Ascend RUN包,或者设置一些训练运行时额外需要的全局环境变量。 如何查看训练作业日志 在训练作业详情页,训练日志窗口提供日志预览、日志下载、日志中搜索关键字、系统日志过滤能力。 预览 系统日志窗口提供训练日
如下以查询作业ID为10的可视化作业为例。 GET https://endpoint/v1/{project_id}/visualization-jobs/10 响应示例 成功响应示例 { "duration": 33000, "service_url": "https://console.huaweicloud
见表3。 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
http_proxy=http://proxy.modelarts.com:80 \ HTTPS_PROXY=http://proxy.modelarts.com:80 \ https_proxy=http://proxy.modelarts.com:80 USER root
na。 mkdir -p /home/ma-user/work/grf cd /home/ma-user/work/grf wget https://dl.grafana.com/oss/release/grafana-9.1.6.linux-amd64.tar.gz tar -zxvf
3。 Step1使用tensorRT量化工具进行模型量化 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
见表3。 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
见表3。 per-tensor静态量化场景 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化,必须在GPU环境 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint
Step1使用tensorRT量化工具进行模型量化 在GPU机器上使用tensorRT 0.9.0版本工具进行模型量化,工具下载使用指导请参见https://github.com/NVIDIA/TensorRT-LLM/tree/v0.9.0。 量化脚本convert_checkpoint