检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
络FiBiNet算法。 用户登录进入计算节点页面。 在左侧导航树上依次选择“作业管理 > 联邦预测”,打开联邦预测作业页面。 在“联邦预测”页面,选择实时预测的Tab页,单击创建。 图1 创建作业 在弹出的对话框中编辑“作业名称”,选择“算法类型”。 选择“算法类型”之后,勾选“
非敏感(Nonsensitive) 不涉及隐私的数据, 例如所处城市、公司类型等。 脱敏(Desensitization) 按照一定的算法,将原始数据的敏感部分隐去。 作业(Job) 作业是指用户创建的分析、学习任务。 作业实例(Job instance) 作业每次运行都将产
3)独立的测试集,用于准确评估横向联邦学习得到的模型准确率。此外由于原始的数据集较小,采用了Imbalanced-Learn中的SMOTE算法,进行了数据集的扩充。下表为扩充过后的数据集统计信息。 乳腺癌数据集统计信息。 统计量 取值 特征数目 30 xx医院的训练样本数目 7366
联邦学习运行平台枚举值。LOCAL,MODEL_ARTS learning_rate String 纵向联邦算法学习率 algorithm_type String 纵向联邦算法类型枚举。 XG_BOOST, LightGBM LOGISTIC_REGRESSION 逻辑回归 NEURAL_NETWORK
可验证代码示例 数据准备 数据集发布 隐私规则防护 基本计算能力验证 基于MPC算法的高安全级别计算 统计型作业的差分隐私保护 父主题: 多方安全计算场景
数据管理>数据创建页面,选择对应连接器(连接器管理中已建立完备),将需要共享的数据发布至空间侧,并支持通过转换函数将特征数据转换成更加适合算法模型的特征数据。 使用场景 连接器使用场景:参与方的数据信息分布在不同的资源服务上,即可通过连接器管理功能来快速连接到名下的各类资源服务。
基于TICS实现端到端的企业积分查询作业 简介 阶段一:数据发布 阶段二:隐私规则防护 阶段三:审批防护 阶段四:基本计算能力验证 阶段五:基于MPC算法的高安全级别计算 阶段六:统计型作业的差分隐私保护
agent_id 是 String 作业发起可信计算节点id,最大32位,由字母和数字组成 algorithm_type 否 String 纵向联邦算法类型枚举值。XG_BOOST,LIGHT_BGM, LOGISTIC_REGRESSION(逻辑回归),NEURAL_NETWORK,FIBINET
隐私保护等级:高级别时,默认启用高安全性的隐私计算的算法保障计算过程的安全,例如秘密分享加密、PSI等,但可能会影响性能以及部分作业正常执行。低级别时,使用国际标准的对称和非对称加密结合方式,在安全沙箱内进行解密计算。性能和灵活度较高。 结果差分隐私:开启时,使用差分隐私算法对多方安全计算作业的执行结果
"dayu002", "stages" : [ { "id" : 5, "stage_name" : "执行算法阶段_5", "processors" : [ { "id" : "FiBiNetMessagePas
授权IAM用户使用TICS 准备数据 启用区块链审计服务(可选) 获取认证信息 空间管理 组建空间 管理空间 代理管理 部署代理 管理代理 管理数据 管理任务 管理算法 审计日志 作业管理 多方安全计算作业 可信联邦学习作业 联邦预测作业 常见问题 了解更多常见问题、案例和解决方案 热门案例 什么是区域和可用区?
符:\ / : * ? " < > |,长度要求在1~128之间 ,最大值2的31次方-1 algorithm 否 String 样本对齐算法。 OPRF, SQL_JOIN; datasets 否 Map<String,String> 样本对齐数据集 align_ids 否 Map<String
实例集合 total Long 总记录数 表5 FlJobListVo 参数 参数类型 描述 algorithm_type String 纵向联邦算法类型枚举。XG_BOOSTXGBoost,LIGHT_BGMLightGBM,LOGISTIC_REGRESSION逻辑回归,NEURAL
以及分布图。 图4 描述性统计 执行预处理。单击列表字段后的添加预处理方法,系统将利用所选的预处理方法(转换函数)将特征数据转换成更加适合算法模型的特征数据。当前TICS支持的特征预处理方法如表1所示。对于一个字段,可以添加多种预处理方法,并且建议按照如下处理顺序进行编排: 连续
“隐私保护等级”设置为高级别后,参与多方计算的字段会进行秘密分享加密。 “隐私保护等级”设置为高级别后,参与2方计算的join字段会使用psi算法输出碰撞的密文数据。 由于本地数据集不支持统计信息上报,因此本地数据集不支持差分隐私功能。 创建多方安全计算作业 用户登录进入计算节点页面。
model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer # 读取目录数据集,读取目录下所有CSV文件 if os.path.isdir(CSV_FILE_PATH):