检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
参数类型 描述 name String 资产名称。 type String 资产类型,枚举如下: algorithm:算法 algorithm2:新算法 model:模型算法 content_id String 资产ID,可在AI Gallery中获取。 subscription_id
l.txt。 下载完成后将上述3个文件数据上传至OBS桶中的imagenet21k_whole文件夹中。上传方法请参考上传数据和算法到OBS。 上传算法到SFS 下载Swin-Transformer代码。 git clone --recursive https://github.
Gallery为零基础开发者,提供无代码开发工具,快速推理、部署模型;为具备基础代码能力的开发者,AI Gallery将复杂的模型、数据及算法策略深度融合,构建了一个高效协同的模型体验环境,让开发者仅需几行代码即可调用任何模型,大幅度降低了模型开发门槛。 充足澎湃算力,最佳实践算力推荐方案,提升实践效率和成本
CPU算力增强型,适用于密集计算场景下运算 GPU规格 “GPU: 1*Vnt1(32GB)|CPU: 8 核 64GB”:GPU单卡规格,32GB显存,适合深度学习场景下的算法训练和调测 “GPU: 1*Tnt004(16GB)|CPU: 8核* 32GB”: GPU单卡规格,16GB显存,推理计算最佳选择,覆盖场景包括计算机视觉、视频处理、NLP等
到AI Gallery、将Workflow工作流发布到AI Gallery、将ModelArts AI应用发布到AI Gallery、发布算法到AI Gallery。 发布到AI Gallery中的资产,也支持在ModelArts中订阅使用,具体可参见从AI Gallery订阅模型、从AI
3:失败 4:停止 task_id String 数据处理任务ID。 template TemplateParam object 数据处理模板,如算法ID和参数等。 version_count Integer 数据处理任务的版本数量。 version_id String 数据处理任务对应的数据集版本ID。
Optimization):直接偏好优化方法,通过直接优化语言模型来实现对大模型输出的精确把控,不用进行强化学习,也可以准确判断和学习到使用者的偏好,最后,DPO算法还可以与其他优化算法相结合,进一步提高深度学习模型的性能。 SFT监督式微调(Self-training Fine-tuning):是一种利用有标签数据进行模型训练的方法。
“nvidia-smi”是一个NVIDIA GPU监视器命令行工具,用于查看GPU的使用情况和性能指标,可以帮助用户进行GPU优化和故障排除。 但是建议在业务软件或训练算法中,避免频繁使用“nvidia-smi”命令功能获取相关信息,存在锁死的风险。出现D+进程后可以尝试如下方法: 方法1: 可以根据ps -aux查到的进程号,
式参考表1,其他参数填写请参考创建训练作业。 表1 创建训练作业的创建方式(使用自定义镜像) 参数名称 说明 创建方式 必选,选择“自定义算法”。 启动方式 必选,选择“自定义”。 镜像 必填,单击右边的“选择”,从容器镜像中选择上一步上传到SWR的镜像。 代码目录 选择训练代码
AI开发平台ModelArts ModelArts CommonOperations ModelArts Dependency Access 算法管理/训练管理/Workflow/自动学习 对象存储服务OBS OBS Administrator 消息通知服务SMN SMN Administrator
在ECS中设置ModelArts用户可读权限 安装和配置OBS命令行工具 (可选)工作空间配置 模型训练: 本地构建镜像及调试 上传镜像 上传数据和算法至SFS(首次使用时需要) 使用Notebook进行代码调试 创建单机多卡训练作业 本地构建镜像及调试 本节通过打包conda env来构建环境,也可以通过pip
数,即上文提到的输入请求类型。 图1 查看服务的调用指南 调用指南中的输入参数取决于您选择的模型来源: 如果您的元模型来源于自动学习或预置算法,其输入输出参数由ModelArts官方定义,请直接参考“调用指南”中的说明,并在预测页签中输入对应的JSON文本或文件进行服务测试。 如
件,具体请参见训练tokenizer文件说明。 Step2 创建SFT全参微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入:
文件,具体请参见训练tokenizer文件说明。 Step2 创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入:
nizer文件,具体请参见训练tokenizer文件说明。 Step2 创建预训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入:
件,具体请参见训练tokenizer文件说明。 Step2 创建SFT全参微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入:
文件,具体请参见训练tokenizer文件说明。 Step2 创建LoRA微调训练任务 创建训练作业,并自定义名称、描述等信息。选择自定义算法,启动方式自定义,以及上传的镜像。训练脚本中会自动执行训练前的权重转换操作和数据处理操作。 图1 选择镜像 如果镜像使用使用基础镜像中的基础镜像时,训练作业启动命令中输入:
O强化训练前提为完成Reward奖励学习;请根据实际规划修改。 loraplus_lr_ratio 16.0 lora+策略算法独有参数;设置Lora+算法的lambda值为16.0 tune_yaml样例模板 ### model model_name_or_path: /hom
“train_params.json” 必选文件,训练参数文件,定义了模型训练的必要参数,例如训练方式、超参信息。该参数会显示在微调工作流的“作业设置”页面的算法配置和超参数设置里面。代码示例请参见train_params.json示例。 “dataset_readme.md” 必选文件,数据集要求
O强化训练前提为完成Reward奖励学习;请根据实际规划修改。 loraplus_lr_ratio 16.0 lora+策略算法独有参数;设置Lora+算法的lambda值为16.0 tune_yaml样例模板 ### model model_name_or_path: /hom