检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel
推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel
index-2519a27e.js # 华为侧提供的代码文件 ├── Button-748313a7.js # 华为侧提供的代码文件 ├── torch_npu-2.1.0.post7-cp39-cp39-
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools/AutoAWQ代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python
flash_attn 根因:昇腾环境暂时不支持flash_attn接口 规避措施:修改dynamic_module_utils.py文件,将180-184行代码注释掉 vim /home/ma-user/anaconda3/envs/PyTorch-2.1.0/lib/python3.9/site
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.910-xxx.zip和算子包AscendCloud-OPP-6.3.910-xxx
建议使用官方提供的镜像部署推理服务。镜像地址{image_url}获取请参见表1。 docker pull {image_url} 步骤三 上传代码包和权重文件 上传安装依赖软件推理代码AscendCloud-LLM-6.3.911-xxx.zip和算子包AscendCloud-OPP-6.3.911-xxx
桶。 准备数据 准备训练数据,可以用本案使用的数据集,也可以使用自己准备的数据集。 准备权重 准备所需的权重文件。 准备代码 准备AscendSpeed训练代码。 准备镜像 准备训练模型适用的容器镜像。 准备Notebook 本案例需要创建一个Notebook,以便能够通过它访问SFS
息进行升级。 约束限制 服务升级关系着业务实现,不当的升级操作会导致升级期间业务中断的情况,请谨慎操作。 ModelArts支持部分场景下在线服务进行无损滚动升级。按要求进行升级前准备,做好验证,即可实现业务不中断的无损升级。 表1 支持无损滚动升级的场景 创建模型的元模型来源 服务使用的是公共资源池
worker_server_num Integer 训练作业worker的个数。 app_url String 训练作业的代码目录。 boot_file_url String 训练作业的代码启动文件。 model_id Long 训练作业的模型ID。 parameter JSON Array 训
推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools ├── benchmark_parallel
ProfilerActivity.NPU] with_stack=False torch_npu.profiler.profile采集方式介绍 配置完如图1所示代码后需要启动训练作业触发采集且只能采集指定的step,对于已经明确需要采集step的场景可以使用该采集方式,此时需要重点关注图1中sched
业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-3rdLLM-xxx.zip的llm_tools/llm_evaluation(6.3.905版本)目录中。 代码目录如下: benchmark_tools ├── benchmark_parallel
String 训练作业的代码目录。如:“/usr/app/”。应与boot_file_url一同出现,若填入model_id则app_url/boot_file_url和engine_id无需填写。 boot_file_url 是 String 训练作业的代码启动文件,需要在代码目录下。如:“/usr/app/boot
推理框架在实际业务中能支持的并发数。 性能benchmark验证使用到的脚本存放在代码包AscendCloud-LLM-xxx.zip的llm_tools/llm_evaluation目录下。 代码目录如下: benchmark_tools |--- modal_benchmark
AutoAWQ量化完成后,使用int32对int4的权重进行打包。昇腾上使用int8对权重进行打包,需要进行权重转换。 进入llm_tools代码目录下执行以下脚本: 执行时间预计10分钟。执行完成后会将权重路径下的原始权重替换成转换后的权重。如需保留之前权重格式,请在转换前备份。 python
ot_file”分别为算法的代码目录和代码启动文件。代码目录为代码启动文件的一级目录。 “job_config”字段下的“inputs”和“outputs”分别为算法的输入输出管道。可以按照实例指定“data_url”和“train_url”,在代码中解析超参分别指定训练所需要的
支持 - 语音分割 不支持 支持 - 表格数据集 支持 不支持 新导入的表格数据的schema和数据集一致。 视频标注 不支持 支持 - 示例代码 示例一:物体检测数据集目录导入 from modelarts.session import Session from modelarts
全面适配和优化,使得精度和性能显著提升。开发者无需从零开始构建模型,只需选择合适的预训练模型进行微调或直接应用,减轻了模型集成的负担。 零代码、免配置、免调优模型开发 平台结合与100+客户适配、调优开源大模型的行业实践经验,沉淀了大量适配昇腾,和调优推理参数的最佳实践。通过为客
解析xml文件支持本地和OBS,如果是OBS,需要Session信息。 PascalVoc.parse_xml(xml_file_path, session=None) 示例代码 指定xml路径,通过调用parse_xml来解析获取xml文件的信息。 from modelarts.dataset.format.voc