检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
方法1:使用常用框架自行编码开发模型,支持“多边形”标注的数据集。 方法2:修改数据集,使用矩形标注。然后再启动训练作业。 父主题: 业务代码问题
如何在训练中加载部分训练好的参数? 在训练作业时,需要从预训练的模型中加载部分参数,初始化当前模型。请您通过如下方式加载: 通过如下代码,您可以查看所有的参数。 from moxing.tensorflow.utils.hyper_param_flags import mox_flags
中的一个个步骤。对于AI开发者来说是非常熟悉的开发模式,而且灵活度极高。Python SDK主要提供以下能力。 开发构建:使用python代码灵活编排构建工作流。 调测:支持debug以及run两种模式,其中run模式支持节点部分运行、全部运行。 发布:支持将调试后的工作流进行固化,发布至运行态,支持配置运行。
自动学习简介 自动学习功能介绍 ModelArts自动学习是帮助人们实现模型的低门槛、高灵活、零代码的定制化模型开发工具。自动学习功能根据标注数据自动设计模型、自动调参、自动训练、自动压缩和部署模型。开发者无需专业的开发基础和编码能力,只需上传数据,通过自动学习界面引导和简单操作即可完成模型训练和部署。
推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 创建数据集 数据准备完成后,需要创建相应项目支持的类型的数据集,具体操作请参考创建ModelArts数据集。
在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者VSCode)联接云上环境调试请参考使用本地IDE开发模型。 父主题: 业务代码问题
网络环境原因,是否有连接网络代理。 解决方法 关掉插件然后重新保存。 减少文件大小。 重新打开jupyter页面。 请检查网络。 父主题: 代码运行常见错误
训练预测分析模型 创建自动学习后,将会进行模型的训练,得到预测分析的模型。模型部署步骤将使用预测模型发布在线预测服务。 操作步骤 在新版自动学习页面,单击创建成功的项目名称,查看当前工作流的执行情况。 在“预测分析”节点中,待节点状态由“运行中”变为“运行成功”,即完成了模型的自动训练。
栏中选择“模型部署 > 在线服务”,进入“在线服务”管理页面。 单击目标服务名称,进入服务详情页面。在“预测”页签的预测代码下,输入预测代码,然后单击“预测”即可进行服务的预测,如图3所示。 JSON文本类的预测代码和返回结果样例如下所示。 图3 预测代码 文件预测 登录Mode
部署图像分类服务 模型部署 模型部署操作即将模型部署为在线服务,并且提供在线的测试UI与监控能力。完成模型训练后,可选择准确率理想且训练状态为“运行成功”的版本部署上线。具体操作步骤如下。 在“运行节点”页面中,待服务部署节点的状态变为“等待输入”时,双击“服务部署”进入配置详情页,完成资源的参数配置操作。
出现“save error”错误,可以运行代码,但是无法保存 如果当前Notebook还可以运行代码,但是无法保存,保存时会提示“save error”错误。大多数原因是华为云WAF安全拦截导致的。 当前页面,即用户的输入或者代码运行的输出有一些字符被华为云拦截,认为有安全风险。
使用窍门 创建项目时,如何快速创建OBS桶及文件夹? 自动学习生成的模型,存储在哪里?支持哪些其他操作? 父主题: 使用自动学习实现零代码AI开发
get_variable”。 处理方法 请您将“启动文件”中的“tf.variable”替换为“tf.get_variable”。 父主题: 业务代码问题
点章节,按照自己的场景需求选择相应的代码示例模板进行修改。编排过程主要分为以下几个步骤。 梳理场景,了解预置Step的功能,确定最终的DAG结构。 单节点功能,如训练、推理等在ModelArts相应服务中调试通过。 根据节点功能选择相应的代码模板,进行内容的补充。 根据DAG结构编排节点,完成Workflow的编写。
根据提示完成身份验证,下载密钥,并妥善保管。 获取在线服务信息 在调用接口时,需获取在线服务的调用地址,以及在线服务的输入参数信息。步骤如下: 登录ModelArts管理控制台,在左侧导航栏中选择“模型部署 > 在线服务”,默认进入“在线服务”列表。 单击目标服务名称,进入服务详情页面。 在“在线服务”的详情页面
将OBS中的文件下载到本地,详请参见从OBS下载数据。示例代码如下: 1 2 3 4 5 6 7 8 9 10 from modelarts.session import Session # 认证用的ak和sk硬编码到代码中或者明文存储都有很大的安全风险,建议在配置文件
推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的音频,至少有2种以上的分类,每种分类的音频数据数不少20条。 创建数据集 数据准备完
通过IP和端口号直连应用 登录弹性云服务器(ECS),可以通过Linux命令行访问在线服务,也可以创建Python环境运行Python代码访问在线服务。schema、 ip、port参数值从3获取。 执行命令示例如下,直接访问在线服务。 curl --location --request POST
参考如何在Notebook中上传下载OBS文件?操作指导,针对原有的Notebook,首先将代码和数据上传至OBS桶中。然后创建一个EVS类型的Notebook,将此OBS中的文件下载至Notebook本地(指新建的EVS类型Notebook)。 父主题: 代码运行常见错误
推荐OBS Browser+上传数据或上传文件夹。上传的数据需满足此类型自动学习项目的数据集要求。 在上传数据时,请选择非加密桶进行上传,否则会由于加密桶无法解密导致后期的训练失败。 用于训练的文本,至少有2种以上的分类,每种分类样本数据数不少20行。 创建数据集 数据准备完成