检测到您已登录华为云国际站账号,为了您更好的体验,建议您访问国际站服务网站 https://www.huaweicloud.com/intl/zh-cn
不再显示此消息
其他参数与正常启服务一致即可。具体参考本文单机场景下OpenAI服务的API接口启动在线推理服务方式。 推理请求测试 使用命令测试推理服务是否正常启动。服务启动命令中的参数设置请参见启动在线推理服务。 通过OpenAI服务API接口启动服务使用以下推理测试命令。${docker
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户运
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户,
自动学习生成的模型,不支持下载使用。 图1 自动学习生成的模型 自动学习生成的模型,支持哪些其他操作 支持部署为在线服务、批量服务或边缘服务。 在自动学习页面中,仅支持部署为在线服务,如需部署为批量服务或边缘服务,可在“模型部署”页面部署。 支持发布至市场 将产生的模型发布至AI Gallery,共享给其他用户。
拼接域名地址。 代码来源 选择训练代码来源。 对象OBS存储:如果训练代码存放在OBS中,则选择“对象OBS存储”。 文件存储:如果训练代码存放在文件存储中,则选择“文件存储”。 代码目录 仅当“代码来源”选择“对象OBS存储”时才显示该参数。 必填,选择训练代码文件所在的OBS目录。
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、在容器中使用ma-user用户,
sort=trending&search=QWEN+AWQ 方式二:使用AutoAWQ量化工具进行量化。 AutoAWQ量化工具的适配代码存放在代码包AscendCloud-LLM-x.x.x.zip的llm_tools/AutoAWQ目录下。 1、使用该量化工具,需要切换conda环境,运行以下命令。
部署上线 ModelArts将存储在OBS中的模型部署上线为在线服务。 AI全流程开发 数据管理 数据集存储在OBS中。 数据集的标注信息存储在OBS中。 支持从OBS中导入数据。 开发环境 Notebook实例中的数据或代码文件存储在OBS中。 训练模型 训练作业使用的数据集存储在OBS中。
监控安全风险 ModelArts支持监控ModelArts在线服务和对应模型负载,执行自动实时监控、告警和通知操作。 云监控可以帮助用户更好地了解服务和模型的各项性能指标。 详细内容请参见ModelArts支持的监控指标。 父主题: 安全
Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training.sh文件,去除以下mc2融合算子--mc2
Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training.sh文件,去除以下mc2融合算子--mc2
Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training.sh文件,去除以下mc2融合算子--mc2
Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training.sh文件,去除以下mc2融合算子--mc2
Yi-34B、Qwen1.5系列、GLM4-9B模型执行lora微调策略任务时产生mc2融合算子错误。 图1 mc2融合算子错误 解决方法 修改代码文件:AscendFactory/scripts_modellink/{model_name}/3_training.sh文件,去除以下mc2融合算子--mc2
要起几个python进程。昇腾底层会读取环境变量:RANK_TABLE_FILE,开发环境已经设置,用户无需关注。比如跑八卡,可以如下片段代码: export RANK_SIZE=8 current_exec_path=$(pwd) echo 'start training'
集,或者您已将用于训练的数据集上传至OBS目录。 请准备好训练脚本,并上传至OBS目录。训练脚本开发指导参见开发用于预置框架训练的代码。 在训练代码中,用户需打印搜索指标参数。 已在OBS创建至少1个空的文件夹,用于存储训练输出的内容。 由于训练作业运行需消耗资源,确保账户未欠费。
增加3条。 “部署类型” 选择此模型支持部署服务的类型,部署上线时只支持部署为此处选择的部署类型,例如此处只选择在线服务,那您导入后只能部署为在线服务。当前支持“在线服务”、“批量服务”和“边缘服务”。 “启动命令” 指定模型的启动命令,您可以自定义该命令。 说明: 包含字符$,|,>,<,`,
必现的问题,使用本地Pycharm远程连接Notebook调试。 建议与总结 在创建训练作业前,推荐您先使用ModelArts开发环境调试训练代码,避免代码迁移过程中的错误。 直接使用线上notebook环境调试请参考使用JupyterLab开发模型。 配置本地IDE(Pycharm或者V
选择“预置框架”,引擎选择“PyTorch”,PyTorch版本根据训练要求选择。 代码目录 选择OBS桶中训练code文件夹所在路径,例如“obs://test-modelarts/code/”。 启动文件 选择代码目录中训练作业的Python启动脚本。例如“obs://test-modelarts/code/main
Gallery在线推理服务部署模型。 如果使用自定义镜像进行训练,操作步骤可以参考使用AI Gallery微调大师训练模型,其中“训练任务类型”默认选择“自定义”,且不支持修改。 如果使用自定义镜像进行部署推理服务,操作步骤可以参考使用AI Gallery在线推理服务部署模型,